AD=AD59 708 CARNEGIE~MELLON UNIV PITTSBURGH PA DEPT OF ELECTRICA==ETC F/6 9/2
SPECIFICATIONs SIMULATION AND AUTOMATED DESIGN OF INTERFACES AN==ETC(U)
JUL 78 A C PARKER DAAG29-76~G=0224
NL

UNCLASSIFIED ; ARO=13670,10=EL
|IIIII|I|III||IIIII |
|

C e iz

’ “’“; fl22
£ 2

""'— E

IH | 1B
lIL2S flis um E

MICROCOPY RESOLUTION TEST CHART
JONAL BUREAU OF ANDARDS 3

i ———

D480, 3670, 10-EL

Specification, Simulation and Automated Design

of Interfaces and Digital Circuits,

i ('/’-'(Z,
/\/_:FINAL REPQRT ,
[Z Moy 74~ 36 1
[~ S E b

. ;
/“/ Alice C./Parker
Assistant Professor

July 31, 1978

U.S. Army Research Office

ADAOS970S

L
?>: /l" i
) Grant Number DAAQ%9-76-G-Q224 {
P
: »
&L Carnegie-Mellon University
| o
E 5 o
% C.2D Approved for Public Release;
=2 s
[i Distribution Unlimited.

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICTAL DEPARTMENT OF
THE ARMY POSITION, UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE g
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOO COVERED
s T P oo] A gL
Specification, Simulation and Automated Design Final:i' May.1, 1976
May 30, 1978
of Interfaces and Digital Circuits Y 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) . 8. CONTRACT OR GRANT NUMBER(s)
Alice C. Parker DAAG29-76-G-0824
' 0224
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Alice C. Parker J
Electrical Engineering Dept., Carnegie-Mellon Univ{-
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
U.S. Army Research Office July 31, 1978
Post Office Box 12211 13. NUMBER OF PAGES

Research Triangle Park, NC 27709

T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thie report)

Unclassified

15Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, !f different from Report)

NA

18. SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official

Department of the 2vmy position, unless so designated by other
authorized documents.,

19. KEY WORDS (Continue on reverse sida if necessary and |dentify by block number)

1/0, Interface, Design Automation, Simulation, Logic Design,
Hardware Descriptive Language, Bus Specification, Computer-Aided Design.

njgs*nucr (Contious e reverse side Hf mecewsary ad identity by block number)
)

This report describes research done in hardware description, simulation,
and design automation. Although the basic thrust of the work has been aimed
at I/0 and interface problems, most of the results are more general.

The efforts in formal hardware description have produced a language for
bus, I/0 and interface specification, GLIDE. GLIDE is supported by a
compiler which performs syntactic and semantic checks. A translator to
the ISPL language has also been written. The resulting code and —=

FORM
DD ,jan 7 1473 EDITION OF 1 NOV 65 1S OBSOLETE

Unclassified

SECURITY CLASSIFICATION GF THIS PAGE (When Deata Entered)

(—unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (cont.)

anon-translatable GLIDE semantics forced abandonment of ISPL either directly
or indirectly from GLIDE for I/0 description:) An example of GLIDE describing
the UNIBUS'™® is included here. -

In order to simulate I/0 and bus transactions, changes were made to the
ISP simulator to allow specification of timing and independent PROCESSES.
A further experiment in simulation was done with ISP descriptions of micro-
code execution for a dozen cocmmercial processors.

5 The major research reported here is design automation work,\part of a
larger design automation project at Carnegie-Mellon University.-5This grant
has supported synthesis research - the mapping from a functional description
of the system (ISP) to be designed to the structure. Automated design of
the control circuitry is in the early stages, but a working program designs
the data paths, registers and memories. An early design the program produced
came within 25% of the cost of the design a human designer produced. The
PDP-8/E design, included here, has a chip count within 507 of that commercial
design, but the design program produced an entirely different design.

=
m
—

=

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

1.0

2.0

3.0
4.0
5.0
6.0
7.0
8.0

9.0

TABLE OF

CONTENTS

Scope of the Investigation . . .

Summary of Results
2.1 The GLIDE Language . . « . .
2.2 Design Automation

Publications Produced
Personnel Supported
Bibliography <« <« &« + o« & @ & « o

Appendix I The GLIDE Language .

Appendix II The GLIDE UNIBUSTM Description

Appendix III The Data-Memory Allocator .

*

Appendix IV The PDP-8/E Design . . . « . .

14
15
16
17

64

« 40

77

|
i
|
|
B
i
|
|
i
I
i
|
|

1.0 SCOPE OF THE INVESTIGATION

The motivation behind the research described in this report is to
enhance the digital designer's capabilities by producing more powerful
design tools. Digital logic design has progressed to the point that
the operation of the logic can be functionally expressed by a variety
of hardware descriptive languages, ISP being one of the more widely
used ones. Functional simulators exist and are useful for verifying
system operation and performance measurements (Barb77a). Thus, the
state of the art in digital design is such that the next addition to
design aids should be synthesis, a program that can design the
STRUCTURE of a digital system, given its FUNCTION or BEHAVIOR as
input. Along with the synthesis of hardware comes the problem of
producing optimal or near optimal designs %to meet the design
constraints. The research repcrted on here is aimed at understanding
the design or synthesis process so that it can be autcmated. One of
the goals of this project is to produce logic-level hardware designs
from ISP descriptions in a non-optimal fashion to better understand
automated design. (A parallel goal of related research by the same
group is to develop discrete optimization algorithms and technique to

be applied in a more complex and powerful package.

Unfortunately, the area of 1I/0 interface and bus design is not as
well organized or developed as digital design. In order to produce
design aids for this kind of problem, much more background effort has

been necessary. First of all, specification of bus and I/0 operaticn

is a different, more difficult problem than 1logic description.

e e e o

Second, simulation 1is more complex due to timing dependencies which
affect the logical operation of the interfaces to I/0 and buses. So,
in order to automate interface design, the remaining effort on this
grant has been aimed at %the problem of I/0 interface and bus
description. The goal here has been to produce a language suitable
for I/0 description and simulation, with the automation of complex
interface design a more distant goal. At the same time, the synthesis
programs described above have been constructed so that reascnable,
simple interfaces to the hardware being designed can be specified and

included in the design.

In the course of pursuing the above goals, some other areas have
been investigated. These include the specification of a module set
data base for interface designs, the comparison of the interface
specification language (GLIDE) with ISPL, and the description and
simulation of microcode execution for a number of processdrs. In the
area of 1/0 design, some further specifications of a general-purpcse
programmable I/0 processor were produced, and a programmable FIFO
buffer chip design was investigated. Publications and technical

reports in these areas are listed in Secticn 3.

O~ w
1

2.0 SUMMARY OF RESULTS

We are presenting here two main research results - the GLIDE
language, and a working synthesis program, the data-memory allocator.

Related conclusions and results are also briefly enumerated.
2.1 The GLIDE Language

A summary of the GLIDE 1language progress is presented here.
Since the complete language has not been published elsewhere, a
pre-publication report is attached as Appendix I. The GLIDE language
has now been completely specified, and a compiler supports the
language. Early effort went into the comparison of GLIDE and 1ISPL,
and this work produced a compiler which translated GLIDE into ISPL.
The result of this was a better understanding of the 1limitations of
ISPL, and the introduction of the PROCESS concept in the ISPS language
and simulator. By PROCESS we méan the set of register-transfer
operations which exist in a control environment independent from the
control environment of other operations. In addition, timing
capabilities were added to the ISPS simulator. Some of the GLIDE
control structures could not be translated accurately into ISPL, and
some primitive GLIDE operations expanded into large blocks of ISPL
code. In particular, the GLIDE memory constructs include FIFO queues
and associative memories, which expand into 1long routines when
translated to ISPL. Also, the semantics of GLIDE contain the noticn
of synchronous data I/0, which cannot be described in ISPL. Other
Primitive operations which translate to routines include parity bit

generation and checking, data formatting, and packing and unpacking of

"w'

L

-

words. The major conclusion to be drawn from the comparison is that

GLIDE and ISP are different 1languages for describing different
entities, and that the problems with I/0 description force the
existance of both languages - GLIDE for I/0 and ISP for digital

systems.

The maor output of the GLIDE effort so far is two partial bus
descriptions - the military computer GYK/12 I/0 bus and the PDP~11
UNIBUSTT{ The UNIBUS description is attached as Appendix II. Three
main conclusions can be drawn from these two examples. First, the
control structures for nesting PROCESSES have scme undefined
semantics, and it is not obvious the effect the PROCESS priority
structure should have on the execution of a GLIDE program. Second,
the control structures inside processes are not block structured, and
hence unwieldy. However, the descriptions seem to accurately reflect
the logieaf operation of the two buses, and therefore, the language is
viable for bus and I/0 description. (Attempts to describe the UNIBUS

with ISPL and ISPS have not resulted in complete descriptions).

Efforts are underway tc¢ validate the GLIDE UNIBUS description.

2.2 Design Automation

In order to discuss the results of the design automation effort,
an overview of the RT-CAD (Register-Transfer level
Computer-Aided-Design) system is presnted here. This overview was

originally published in (Snow78a).

RT-CAD OVERVIEW

The ulmate goal of ‘the RT-CAD project 1is to provide a
technology-relative, structured-design aid to help the hardware
designer explore a larger number of possible design implementations.
Inputs to the system are a behavioral description of the system to be
designed, an objective function which specifies the user'’s
optimization criteria, and a 1library specifying the hardware
components available tc the design system. The components of the

RT-CAD system are shown in Figure 1 and discussed below.

ISPS parte tree Optimszation crusna

! :

Giobal 10 all parts
Opltimezer of the system

Design Style
Selector

Value trace

4

¢ Design style
1+ selection
.......... | Partitioner

l Partitioned velus trace

Dau/nir-n.uy Conlrol
== Atiocator ™79 Allocator

[R EEEPERLY B

Oata path graph 4 {Coumu greph

Module

Moduls -=====- o e

1et Lbrary

l Module interconnection graph

Physical
Layout
Processor

l

Completed design

Figure): RT-CAD System Overview

The RT-CAD system differs from other design automation systems in
that 1%t operates from a behavioral specification. Such specification
provides a model that, while accurately characterizing the
input-output behavior of a piece of hardware, does not necessarily
reflect its internal structure. The design process is one of binding
implementation decisions in a top-down manner as a design proceeds
through the RT-CAD system. More and more structural detail is frozen
at each level until a complete hardware specification is obtained, the
most influential design search space. The functions of <the design

system components which bind ¢these implementaticn decisions are

described below.

GLOBAL OPTIMIZER. The global optimizer applies high-level
transformations to a design's behavicral representation after
translating it from ISPS notation (Barb77b) to an abstract design
representation called the value trace (Snow78b). The transformations
have a significant impact on the cost, performance, and other
parameters of the designs to which they are applied. The research
described in this paper centers around the design representaticn, the
transformations upon it, and the strategy guiding their application in

the search for an cptimal implementaion. |

DESIGN STYLE SELECTOR. By considering the various module sets

that can be used (e.g., TTL vs. a microprocessor), the design

constraints imposed (e.g., cost, speed), and the structure of the

algorithm to be designed (e.g., pipeline data flow), the design style

selector decides on the specific style of design to be employed (e.g.,

bit:slice microprocessor, MOS microprccessor, SSI/MSI logic). Earlier
work (Thom77b) shows this to be an influential decision in *terms of
cost and speed tradeoffs. Whe: *he style is selected, the design is
passed to an allocator specific to the design style. Initial research
into the design style selection process has been completed (Thom 77a)

and an autcmatic design style selector is currently being programmed.

PARTITIONER. The partitioner groups operations from the abstract
design representation into control steps. This effectively binds the
control flow for the design. Tradecffs between the data and control

parts are made at this level.

DATA/MEMORY (DM) ALLOCATOR. The function of the DM allocators is
to decide the number and type of data operators, muliplexors, and
registers needed to implement the data part of the design. They are
style specific in that they embody analytic and heuristic knowledge
about a style (e.g., the trade-offs involved in the design of a TTL
system), but they do not have access to the specific details of each
module set. The output of the allocator is a data path graph whose
nodes are elements such as adders or registers. An initial
implementation of an allocator for the TTL design style is reported in

(Hafe78).

CONTROL ALLOCATOR. The control allocator generates a sequential
state machine to control the data paths produced by the DM alitecator.
The control allocator has the option of designing the control unit
around control philosophies such as microprogramming, prcgrammed logic

arrays, random logic, etc. The output of the control allocator 1is a

SPREC——— |

T .

control path graph whose nodes represent control states.

MODULE BINDER. The module binder selects physical modules from
the module set library tc implement a design's data and control pat
graphs. The library contains descriptions of the components available
to the design system and may be freely updated so that it is kept
current with respect to advances in module technolegy. This dynamic
aspect of the module set library provides for the technology-relative

aspects of the RT-CAD system.

PHYSICAL LAYQUT PRCCESSOR. This component partitions the system
into printed circuit boards or chips, decides the placement of
components, routesinterconnecticns, and prepares engineering

documentation.

-

Research is currently underway into the design of all of the
system components described above. In addition, the problem cf

integrating them into a coherent design system is being investigated.

Research supported under this grant has focused on the synthesis
routines - the data-memory and control allocators. Although the
control allocation effort is just beginning, some ideas as to the
nature of the problems to be solved have been posed. The generation
of control hardware is analogous to the problem of generation of
microcode, with its inherent computational complexity, but there is
one difference. Generation of hardware introduces another set of
variables into the optimization routines, Not only are

microinstructions generated, but the control hardware itself must be

designed and optimized.

More progress has been made o1 the data memory allocation
problem. A non-optimizing allocator has been written and reported in
(Park78) and (Hafe78). In order not to duplicate these publicatiocns,
(Hafe78) 1is attached as Appendix III, and the results are summarized
here. This allocator produces a distributed logic design of the data
paths and storage 1locations for a given ISPL description). (The
program uses ISPL instead of ISPS because of the ISPS development
timetable. It 1is being modified to accept ISPS). It performs scme
error checking to indicate to the user potential resource conflicts
and design errors, and functions independently of the actual
integrated circuits used to implement the logic diagram it preduces.
Preliminary checks indicate that the designs are capable of performing
the functions present in the original description. Two designs have
been done by the allocator. The first 1is part of an elevator
controller and is described in Appendix III. The second 1is the
PDP-8/E. A non-optimal hand mapping of integrated circuits onto the
allocator output logic diagram has been done, and estimate of chip
count made. t is difficult to compare the automated design with the
original DEC design for three reasons. First, the ISPL description
input to the allocator declares as registers some values the PDP-8E
uses but never stores explicitly in registers, such as the effective
address. These show up as registers in the allocator's design. Also,
the allocator designs distributed logic, and the DEC design was done
in the central-accumulator design style (For a discussion of design

styles, see (Thom77)). Finally, the DEC design has assumed a boundary

| [SN,

between the control and data-memory parts of the design, but the
boundary is different from that imposed on the allocator by the ISPL
description. Thus some tests, flags, and registers which must be
declared explicitly in the ISPL description are part of the control in
the DEC design. In spite of these differences, estimates of chip
count indicate that the allocator uses 50% more integrated circuit
chips than the human designers for the data paths and registers. Of
course, these estimates were made using the same 1970 technolegy chip
set the DEC designers had to deal with. The 50% excess hardware can
be found in muliplexers which connect the registers, the extra
registers declared 1in the ISPL description, and duplicated operators
like increment, add, and compare. Much of this can be attributed to
the way in which the ISPL des¢ripticn had to be written, and scme of
these constraints will not be present 1in future ISPS descriptions.
However, other chips can only be eliminated when optimization
algorithms operate at scme stage of the design process. The complete
allccator output can be found in Appendix IV, alcong wit the
implementation information used to make the chip count estimates, and

the PDP-8/E ISPL description.

One interesting point to be illustrated is the differences in the
design seen even from the block diagram level. This is shown in
Figure 2. There are two reasons for the differences. First, as
stated previously, the design styles are different. Second, the
multiplexing is used in different ways. In the DEC version, the
operators are shared, and are eve: used to provide no-op paths from

one register to another. In the CMU version, only registers are

W’ . ad e ST T -

10

shared and use multiplexed inputs. The ISPL language is partially the

source of this disparity. In ISPL, the wuser can repeatedly use
register A as a destination from various scurces. However, the
expressions A+B and C+D do not imply (or discount) a single adder.
Other differences in the design include the use of multiplexers for
shifting in the DEC design, and use of true/complement 0/1 chips for
creating complements. "Oring" of the MQ and AC registers in the DEC
version is done within the multiplexing hardware. Constants are coften
created in one place and gated over already existant data paths tc the
registers. In the CMU version, these ccnstants are multiplexed at the

register inputs.

One final difference is the treatment of the Link FF and
Accumulator register as a single register in the CMU versicn. This is
done because of the way the PDP-8/E ISPL description was written.
Further analysis of this design 1is in progress and includes an

implmentation of the control by hand. Compariscns of the DEC and CMU

speeds will then be possible.

12

[

¥ 7 7
1 l‘

EADD<O: 11> I i

i |

i i

'=—__Jd 1 |
a A {
INCREMENT H ﬁ
:mi \ I
C<0:11> LAST.2<0:11> 1<0:11> 'i

= g o 3 1

— D= = S

l_.__.‘l u i:
‘l

MAR<Q: 11> MDR<0:11> "

i

B

L&AC<0:12>

\

N

:
v

=
!

ADDER

JL q:———Jj

LL

Figure 2a. Bleck Diagram of CMU PDP-8 Design.

LJ |

POP-8/E
OPTIONS

MEMORY DATa

13

MD 5LS

q

MB =MD

FEAD
CORE T
MEMCRY STROBE
{)
XY SELECT
MEMORY CONTROL
TIMING =t aND —
XY SELECTION
MA B

MAJOR HEGISTERS BUS

MB OUTPUT

ﬁ ﬁam |

mmm
L

n=-0

)

SHIFT
CONTROL-

—

T

|
1
|
|
L WO DiR L

T T T T e secisrea)

MEM REGCISTE

SENSE ™
FF

et

CLEAR

I
|
q
!
[
|
4

HSTRUC TION
REGISTER
iCl

TIMING —

J4

bl CARRY ':uv:.:nnv N
L_T‘ ' —O0a
1

asf STER INPUT MULTIPLEXER J r DATA CONTROL

1.DAD

DATA INPUT

Figure

2b.

Basic Data Paths.

S| PROGRAMMERS

—111 INSCLE

|
1 e [|
|- e

! 8ys —————————

|

l
Jj aAC, M8
AND GATE

|
|

3.0 PUBLICATIONS

"An Investigation of Glide - A Generalized Language for Interface
Description and Evaluation," Andrew Nagle, M.S. Project Report,
Carnegie-Mellon Universty, Electrical Engineering Department, August,
1976.

"Hardware/Software Tradeoffs in a Variable Word Width, Variable Queue
Length Buffer Memory," A.C. Parker with A.W. Nagle, Prcceedings of
the 4th Annual Computer Architecture Symposium, March, 1977.

"Register Transfer Level Digital Design Autcmation: The Allocation
Process," Louis Hafer and Alice Parker, Proceedings of the 15th Annual
Design Automation Conference, June, 1978.

"The Application of a Hardware Descriptive Language for Design
Automation," Alice Parker and Louis Hafer, Proceedings of the Third
Jerusalem Conference on Infermaticn Technology, August, 1978.

"Data-Memory Allocation in the Distributed Logic Design Style," Louis
Hafer, M.S. Project Report, Carnegie-Mellon Universty, Electrical
Engineering Department, December, 1977.

"Automatic Design of Sequencers for the Control of Digital Hardware,"
Andrew Nagle, Thesis Proposal, Carnegie-Mellcen University, Electrical
Engineering Department, January, 1978.

"The Development of a Hardware Descriptive Language for Interfacing,"
Alice Parker, Andrew Nagle, and Bill Lyden, Carnegie-Mellcn
University, Electrical Engineering Department Technical Report,
August, 1977.

"Digital Interface Description," Alice Parker, Proceedings, COMPCON,
February, 1978.

"Description and Simulation of Microcode Execution," Alice Parker and
Andrew Nagle, Proceedings of the th Annual Symposium on Computer
Architecture, April, 1978.

"Structure and Function of a General Purpose Input/Output Processor,"
Alice Parker, Andrew Nagle, and James Gault, Carnegie-Mellon
University, Electrical Engineering Department, unpublished paper,
August, 1977.

"The Development of GLIDE: A Hardware Descriptive Language for
Interfacing and I/0 Port Specification," Alice Parker, Carnegie-Mellon
University, Electrical Engineering Department, unpublished paper,
August, 1978.

14

4.0 PERSONNEL SUPPORTED

Alice C. Parker, Principal Investigator
Daniel Siewiorek, Associate Investigator

Andrew Nagle, Research Assistant, MSEE, December, 1976

Louis Hafer, Research Assistant, MSEE, December, 1976

5.0 BIBLIOGRAPHY

(Barb77a) Barbacei, M.R., et. al; "Architecture Research
Facility: ISP Descriptions, Simulation and Data Collection,"
Proceedings, 1977 National Computer Conference, Dallas, Texas,
June 1977.

(Barb77b) Barbacci, M.R., Barnes, G.E., Cattell, R.G. and Siewiorek,
D.P., "The ISPS Ccmputer Descripticn Language," technical
report, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1977.

(DEC72) Digital Equipment Corporation, "PDP-8/E Maintenance Manual,
vol. 1, no. DEC-8E-HR1B-D, 1972.

(Hafe78) Hafer, L.J. and Parker, A.C., "Register-Transfer Level
Automatic Digital Design: The Alloccation Process," Design
Automation Conference Proceedings, vol. 15, 1978.

(Park78) Parker, A.C. and Hafer, L.J., "The Applicaticn of a
Hardware Descriptive Language for Design Automation,”
Proceedings of the Third Jerusalem Conference on Information
Technology, August 1978.

(Snow78a) Snow, E.A., Siewiorek, D.P. and Themas, D.E«, "A
Technology-Relative Computer-Aided Design System: Abstract
Representations, Transfcrmations and Design Tradeoffs,"
Proceedings of the 15th Design Automation Conference, Las
Vegas, Nevada, June 1978.

(Snow78b) Snow, E.A., "Automation of Module Set Independent
Register~Transfer Level Design," Fh.D. dissertation,
Electrical Engineering Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1978.

(Thom772) Thomas, D.E., "The Design and Analysis of an Autcmated
Design Style Selector," Ph.D. dissertation, Electrical
Engineering Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1977.

(Thom77b) Thomas, D.E. and Siewiorek, D.P., "Measuring Designer
Performance to Verify Design Automated Systems," Design
Automation Conference Proceedings, vol. 1%, DPPs 411-418,
1977.

16

APPENDIX I 17

- _____The Development of GLIDE: a Hardware Descriptive Language

tor Interfacing and I/0 Port Specification

. . __Alice Cline Parker

Departrment of Electrical Engineering

CarnegieeMellon University

__ ABSTRACT

This paper presents GLIDE, a language designed ¢for 1/0 Port

~ specification, The language {s based on the process construct and

" allows description of interfaces, 1/0 controllers, and buses, B L

T Keywords: hardware descriptive language, register=transfer level

e ST s T ~ bus specification, interfacing, = inmput/output,
process=oriented

This researcn {s supported by the U,S, Army Research oztise qndegﬂ

_grants #DAAG29+76+G=0224 and $DAAG29=78=G=0070,

" Buses, I/0 transactions and interfaces can be grouped under the

~ more general category of ports and port interconnections, Ports often

nave to be specified along a number of dimensions = rellability,

- performance and function as well as structure, In addition, the |

overall port design philosophy should be evident ¢rom the

speci{fication,

There are several possible ways to specify port designs, Some of

- these verify that the design meets structural and functional

~ constraints, and some also demonstrate that the port itself is capable

" "0f meeting performance reaquirements, 0f course {t {s more difficult

 to demonstrate that reliability requirements have been met,

_Standard Specificatios Techaiguss @000 4 it

~ Virtually all {mplemented ports are specified with:

- 7, Block plagrams of Interconnections

« Timing Dlagrams
" o Verbal Discussion

. Examples

~ Certainly, block diagrams convey some of the interconnection
structure, Ideally, a block diagram should indicate the direction of

the transfer on the {nterconnections, daisy chaining and basic

tfunctions of the interconnections, The IEEE=488 bus, shown {n Figure

19

1, is an example of a bloek diagram specification, _

Timing diagrams can be ugsed ¢to {ndicate protocol, timing

dependencies, synchronization mechanisms, data transfer mechanisms,

~ control of the {nterconnections, and priority alloecation (to some
~extent), In addition, timing dlagrams {llustrate the potential port
performance assuming the modules the ports are attached to can sustain

the speeds, Timing diagrams should be drawn from the viewpoint of
=

~ path communicating ports like the example in Figure " The timing
- ‘dlagrams can be supplemented with verbal discussion, and indication of
- eritical timing dependencies, e e

___Verbal discussion {s most valuable when it is used to describe

the design philosophy, and overall operation, and to supplement other

__descriptive techniques, Figure 3 contains an example portion of a bus

__ description which presents a design philosophy.

Examples, complete with timing diagrams, are often used to

- clarity more difficult points, It {s extremely important that the

- examples describe points already covered in the specification and not

introduce new concepts, In addition, examples should be clearly
P ~ specified as such and any bus functioning pecyliar to that example

~ should be so stated,

__Rll of these techniques provide a viewpoint on the port design,

These technigues must be combined with a more formal specification

method for a complete description,) s

20

HANDSHAKE OR DATA-BYTE GENERAL INTERFACE
DATABUS TRANSFER CCNTROL BUS MANAGEMENT BUS
(B SIGNAL LINES) (3 SIGNAL LINES) (5 SIGNAL LINES)

4 e R e & Tt/ f TTTTT ThpIo 1-8 ~ DATA INPUT/QUTPUT LINES

o . e

_ < DAV - DATAVALID .

REE {500 a1 7 = NRFD - NOT AEADY FOR DATA® -

T 0 Rl / o NDAC - DATA NOT ACCEPTED® :

e | L I

— ag > IFC - INTERFACE CLEAR

o BULL] SuLyl I 0 o ATN - ATTENTION

o L ANI1 (1] Ly : (SRQ - SERVICE REQUEST

ey, 1SRN i | | R 1| REN - REMOTE ENABLE

MOIERdN REESERN)52 E0 1 I SEREE! EQ! - END CRIDENTIFY
=T il 1T e ST
THTT A P L H
) “INDICATES THAT NECATION -
IS REPRESENTED BY LOW
STATE ON THESE TW0O LINES
ONLY.
'E.G. CALCULATOR €G DIGITAL € G SIGNAL £.G. TAPE READER
VOLTMETER GENERATOR

Figure 1. Example Block Diagram (Ricc74).

21

Sender

Data.snd

L]
Data ._>l‘<Data Valid D‘(
|
|
|
|

t
je delay™>

Data.rec

l |
| - delay ¥

Receiver

¥ delay ?{

Data.snd

Paca R T |

Data.rec

Figure 2. Timing Diagram for Two-Wire Protocol.

Device A il __I TT__."
Able to N =% |
talk, listen, ‘H
and control = l
(eg..) l
i—>__fﬂiﬁﬁ__
Device B]
; Able to i =
talk and
listen —
— Data byte
g, digital transfer
28 control
Device C
SIS R .,
Only able — l
to listen 11 |
— General
(e g., s1gnal g) interface
ESY management
Device D
Only able |- i
to tafk — J l {oro1...8
- (0.g.. counter) DAV
F NRFOD
L—————— NDAC
2 e
e s e —— ATN
L i --SRQ A
] e REN
L R --—--—EOI

Figure 3. Example Interface Discussion (Loug74).

" Formal specifications of port and bus operation have not been

~ applied for many practical designs, However, some techniques do

exist, These aret

'+ The state diagram approach

. The flowchart approach

« The formal language approach

~ Flowcharts and state diagrams have been used to describe a number

cof buses = including the IEEE=488 bus, (See Figures 4 and 5),

% ____ Languages have been slower to develop,

~ Bell and Newell (Bell7{) laid the groundwork £for interface

deseription with thelr regquirements 2for port description, In the
interim, interface standards committees began struggling with the

description problem, Curtis, working with the Purdue Workshop on

Industrial Computer sSystems, Data Transmission Intergace and

T

- Committee, proposed 1IDS, an Interface Description System (Curt?S),

‘The system {nvolved the use of the PMS notation, (from Bell and

Newell) at the top 1level, and the use of a néw language for

description at the programming and register=transfer levels, In

add{tion, the system was to cover other levels of description as well,

put these were not defined at the time, ‘The new language Curtls
proposed was a version of ISP with features of AHPL and with necessary

timing constructs added, (Most of which were being added to the ISPL

version of 18Py (Siew74d)y,

TALKEH

‘ START ’

SET DAV HIGH

ARE BOTH

NRFD AND NDAC

SENSED

HIGH
?

NO

Y

PUT OR CHANGE
DATA LINES

SET DAV HIGH

SET DAV LOW

Figure 4,

usrenen

‘ START ’

SET NRFD AND
NDAC LOW

YES

ERRCR
- CONDITION

SET NRFOD HIGH

DATA ISVALID AND MAY

NOW BE ACCEPTED

NDAC 516, &
- AL Line STays LOW ynT;
ACCEPTQRS HAvE —

ACCEPTED T

ACCEPT
DATABYTE

SET NRFD LOW

Y

SET NDAC HIGH

HAS DAV
GONE HIGH
EX

2

SET NDAC LOW

A

Example Bus Flowchart (Ricc74).

4

LISTENER

Oevice is ynaddresed
and ignoring bus if 2
ATN s false

Power

IFC
(within 100 ps)

ATN

ATN - Attention

IFC - Intertace Clear
MLA- My Listen Address
UNL - Uniisten Command
ACDS~Accept Data State

IFC-MULA- (ACDS)

(within 200 ns)

Oevice is addressed
but but s still in
command mode

Listener
Addiested

ATN
(within 200 ns)

Oevice is addressed
and responding to
data on bus

ACCEPTOR HAND

Handshak
urned ot ATN *CACD +

(within 200ns)

Power
on

. Acceptor

Acceptor
Idle

Acceptor
wait for
new cycie

ATN - Attention
LACS— Lisiener Active

ROY = internal Ready
Message (from punch)

Not Ready

SHAKE
Oevice graunds NRFO, NDAC

Device allows
NRFO to go high

ATN + ROY

Acceptor
Ready

ATN-ROY
(within 200ns)

DAV

St ADY-ATN
LADS—Listener Addressed + ATN:T,
DAV gu:"v lid Device allows Device grounds
& e NDAC to go h h///’ RFO, NOA
NFROD—Not Ready For Data o g NRFD, c
NDAC- Nct Data Accepted Ty = Sufficient time for the

Listener Function to make
its state transitions

Figure 5. Example State D

iagram (Ricc74).

25

S lTa 26

At the same time Vissers had been developing a language which s

essentially a formal description of the state diagrams describing
interfacing funections, SDLC and the IEEE=488 {nterface buys have been

___deseriped using this approach (Viss76, Knob75), The formalism of this

language allows one {mportant application = functional simulation,

_Vissers has intentionally restricted the coverage of the language to
the gate and register transfer levels, with timing added, An example
ot the language {s shown in Figure 6(b), which illustrates the states
__and transitions of an interface device which inputs an 8 bit character
grom an aysnchronous serial 1ine, The transitions depend upon the -
ekt S ARERERRRRR P = R T A el T . I

o
/ \l\\//
;| T \
/.
ey \\\\\\\\ I
Start -
\n b
- W T S—
3 - (/S‘..On \\
Ay/\

‘ t d td(k \\ b]L /')

S a X
& / /‘\ ‘t_/\
i \j‘i Count # 0

Grazphical

Form

count = 0
[: = Input bit
INIT: = Initial State
REG: = Input 1 bit register
T1: = Time between bits
: COUNT:= Bit count

Figure 6(a) Interface Description Using the State Diagram Approach

BT SR,

V SERINPUT g ,
“TLTINITY — (1 = 0) INIT -
 [2) COUNT < = 8
TT(3) P11 DELAY T
_Formal = (4] REG <« 1
Language

[6] —> (COUNT = 0)/P1
(7) DELAY TI TR |
_{8) — (1 = 0)/ERROR (No stop bits) ’
(9) DELAY Tt o "
~[10) — (I = 0)/ERROR (Only one stop bit)
(11} — INIT 1 i]

SRR

Figure 6(b), 1Interface Description Using the State Diagram Approach

SR e S s R —

__There are advantages and disadvantages of each of these

approaches, State diagrams convey state transitions well, but

___tunctions performed at each state sometimes are obscured, Even though
___conditions for state transition are specified, it is difficult to

extrapolate from the diagrams to determine the actual order {n which

__transitions occur, Finally, the diagrams become unwieldy for complex

_ descriptions,

Flowcharts convey the actual functions well but have one
~ " tundamental limitation: they are inherently sequential, Parallelisnms

" on the global level (separate control environments) must be described

with separate floweharts, Parallel branches must have special
~ constructs created, and some things cannot be described at all, The

T eclassic example is a reset line which can stop port functioning at any

point and reset all state varlables,

State diagrams, flowcharts and formal languages all suffer from

the foreste=tree problem, Unless the writer of the descriptigg_ghoonegn_

~labels carefully, documents, and structures his description, it s

29

difficult for the reader to ascertain the basic function being carried

out, A paging algorithm for a cache memory, for example, must be
deduced from the description and if the variables are labeled "A",

"B*, "C" instead of “Higher,pits,PC", "Lower,bits,PC*, "Next,address"

‘the meaning of the description (s unclear, FOr any of the above
techniques to be useful, a global flowchart or state diagram s

necessary in order to understand overall I/0 functioning., Finally,

__the primitives of the formal language must be chosen to reflect the

__primitive operations innherent in port anc I/C cperation,

I1, ZIHE GLIRE LANGUAGE

" GLIDE = a Generalized Language for Interface Description and

T Evaluation = is a relatively undeveloped language, Yet, {t {s capable

of addressing some issues left untouched by ¢the exlisting Jlanguages,
It (s the only language that s designed for a subset of digital

"~ systems = interfaces and peripheral controllersy other languages

~ problems germane to interfacing and I/0,

have had a more general application. As such, GLIDE focuses on some

Some specific features of GLIDE are the following: Values can be

~ can be declared and accessed with single statementsy Parity checking

__specified as transitions in addition to level values; FIFOQ buffers

and generation are primitive operations for GLIDE; Synchronous I1/0

and clocks can be declared, and timeout statements are available to
the writer, Finally, {independent control environments can be

synchronously {nitiated under conditions declared in the progranm,

" This sectlion presents the origin of GLIDE, and section III is an

" {ntroductory gquide for the use of GLIDE, Discussions and conclusions

In section IV focus on the applications of GLIDE,

When GLIDE (Park77a) was introduced, it was baséd on the premise
that digital 1I/0 and interfacing functions can be broken down into

tour primitive groups: data storage, data manipulation, control, and

data Input/output,

31

Given this conceptual partitioning, the goal of GLIDE 4is to

provide a convenient descriptive language to specify the fynctions

within the modules {n a port, and between ports, For example, the

___writer can declare an external line or group of lines, and bind them

te a direction like send, receive, or bi~directional, and to an

interface technolegy, A separate declaration s provided for

synchronous transfars, Data can be moved directly through the port or

__into an {nternal register for

later manipulation, The control

___responds to conditions on the input lines, and sits idle when no

startup conditions exist, In the same way, each of the other

__a complete functional description of a specific port,

__functional boxes shown above can be described, The combined result is

S{ince normally GLIDE descriptions are written to provide

functional descriptions, as opposed to gate=level hardware

descriptions, the operators provided In the language comprise a

specialized set of operators designed to maintain this level of

abstraction,* A typical GLIDE statement may not describe a single

#These operatdrs are based on a set of primitive I70 functionsi

i, Data Input/Output , Data paths and data transfer mechanisms
L[]

Electrical characteristics

" Timing dependencies ({ncluding timeouts)

: Synchronization mechanisns
« Control of the bus
» Priority allocation

2, Control

3, Data Manipulation

T T, Protocol (including interrupts)
« Error cheeking

., Data tormatting

4, Data Storage . Buffering and storage

e el T e _ ~ __" SELWEL i 3 _‘_ .. I

register transfer, but rather a single digital function such as buftfer

__store, parity test, or data encode, A conscious effort is also made
%o limit the language to ports and 1/Q0, Therefore many functions

peculiar to processors have not been included {n the repertoire of

__GUIDE operators, On

the other hand, a fairly rich set of

special-purpose operators is previded to make description writing more

convenient,

- A second major result of the earlier work iIs the embodiment of

" the same set of primitive operators in a general purpose I/0 processor

(P{o) (Park?77b)., Speclified at the register transfer level, this =
" machine i{s designed to emulate any Pio, and it 1s microcoded in GLIDE,

The machine is modularized, with each module capable of executing one

of the primitive operations referred to above, 1Thus there are 1/0
~ modules, synchronous I/0 modules, parity check and generation modules,

and control modules, for example, all of which are under GLIDE program

control,

____The generalized Pio is capable of replacing an arbitrary number

of Plos {in a singleecomputer environment, This one Eggg;ne could

_ _dynamically reconfigure {tself to be a disk controller, teletype

interface (more than one {f desired), line printer interface, magnetic

tape unit controller, etc, 1Its modularity allows its size to depend =
on the number and complexity of desired operations, and {t could

easily be extended to encompass any new device smply by writing a

GLIDE description and entering that description into the machine,

inserting additional hardvare modules, if required, The total number

33

of interfaces which could be emulted simultaneously is limited only by

the speed and bandwidth of the machine, which has not been determined,

T Y T Y

|| —
|

|

F e ia S —— s
| e
|

|

E ——
|

|

|

|

|

|

|

The basic structure of a GLIDE description is the PROCESS, which

_is a description of an autonomeus operating environment (asynchronous
_control environment) aleng with operations which take place there, A

PROCESS consists o0f GLIDE STRUCTURE statements, which d’?ﬁ!iiﬁ the

___environment of operations, followed by DATA and CONTROL SEQUENCING

__statements, which describe the actual operations, A PROCESS may also

consist of local processes, which are started under certain specitied

__conditions, and remain idle whenever those conditions are not net,
__ The outermost process, or the outermost block, is the MAIN PROCESS and

contains all subprocesses and subprocess 1n1t1at193_"condig£gps

___nhecessary to describe the complete interface, An artifical example

_PROCESS structure is shown below in Figure 7,

___Here, the name of the entire GLIDE description is A, and there

__are three subprocesses AA, AAAA and BB, Inside the MAIN PROCESS A, a

pair of {(nitiation staements sets up the conditions under wniqgﬂg&_ggd

BB _are to be started, Any time after these statements have been

_executed, as long as A is still being executed and the {nitiation

conditions for AA and/or BB have been met, either or both processes

_can be started, 1If a priority ordering between processes is desired,
a priority for initiation can be specified in the initiation

statement, Once a process {s started, however, processes of _lj}qherﬁ

_priorities whose initiation conditions are met can suspend certain

35

MAIN PROCESS A STRUCTURE statements ~ (declarations
common to the entire Port description)

PROCESS initiation conditions
for AA, BB

register declarations
interconnection declarations

clock declaration
DATA and SEQUENCE CONTROL
statements which operate in the main

process environment

PROCESS AA

STRUCTURE statements
(including initiation conditions
for PROCESS AAAA)

. DATA AND SEQUENCE CONTROL
statements for AA

PROCESS AAAA

Body of AAAA

END - end of AAAA

END - end of AA

PROCESS BB

Body of PROCESS BB

END - end of BB

END - end of A

Figure 7. The GLIDE PROCESS Structure.

R —

36

s _currently executing, Of course, the

lower opriority proces:

inf{tiation conditions can be specified so that this does not occur, as
will be shown later, Also, high priority processes nested {nside

lower priority processes will not suspend the lower priority processes

when initiated, Process AA, if higher priority than BB, can suspend
it. However, process AAAA cannot suspend ay other process since {t s

at the lowest level of nesting, (In fact, AAAA can be {nitiated only

while AA s executing), The syntax of the {nitiation statement is

_illustrated with this example:r

INIT AAAA33,(ba AND bC AND bd) = 1

This sets up the initfatlion conditions for PROCESS AAAA, which

~ nas priority of level 3,

The process structure of GLIDE {s designed to allow a GLIDE

__description to indicate overall port and bus operation to the reader,

Proper initiation conditions and nesting of PROCESSES can provide an

___accurate representation of the actual hardware control environments,

The relationship between GLIDE PROCESSES and the 1/0 structure lIs

shown in Figure 8, based on our artificial example, -
___ We now turn to a more complete discussion of the GLIDE language,

using parts of a UNIBUS=like structure as an example, R
__ GLIDE STRUCTURE STAIEMENTS 4

v e
Bave ') interconnects —
(Described (Declared in A) (Described
as " as
Process Process
AA) AAAA)
kst s

System reset and
clear (Described as
Process BB)

agT

Process A gives initiation
conditions for AA and BB.
AA initiates AAAA for
transactions between parts.

Figure 8. 1I/0 Structure of the Artificial Example.

38

Besides the PROCESS initiation statement, there are a set of

 statements used to ~declare aspects of the port and {nterconnect

____structures, The first of these to be discussed is the Declaration

Statement,

" Internal port registers and port {nterconnections must e’

"The syntax of the declaration statement {s!

<hardware speclfication>\<name>,<name>,,,,,<named>;

‘where <hardware specification> defines the logic type and function

T T T T T ot the declared hardware using the following

abbreviations: oA
Basic logic type:r R b e i
e T T 7T ECL T emitterwscoupled loglce
TTL trans{stor=transistor logic
cMOS Complementary MOS e B
. MOS Metal oxide semicondyetor
i T T TRANS transformer coupled] 5
E Functions il
CRL Current Loop
~ _HIR High {mpedance receivers
! e R R S e BT High level transmitters 3 § 3
23 oc Open collector gates
ST T T scH T scnmitt trigger T
, TRI Trisstate
r INT Intérnal register rek 1
| DIFSND Differential sender
) R T 8ND Sender : ol
REC Receiver
T Bl " Biedirectional
DIFREC Difterential receiver
“ DIFET Di{tt¢erential Bi=directional — — 7
<name>

is an identifier, the f{rst four characters of which must be unigque,

The declarations may also have length and width attgqﬂgd' as ;n ISPL

and ISPS (Barb78), Some examples of the declaration statement areg

va-mw\. S

39

TTL OC\data,bus<710>,address, bus<710>;

This statement describes two 8«line TTL open collector bus
_segments, one named data,bus, and one named address,bus,

ECL INT\count,register<710>)

~ This statement describes a single 8=pbit ECL logic register

~_whieh is internal to the interface,

A function designation {s mandatory for every declaration, but a logic

~ type 1s optional, Every assignment bearing an INT functional

" designation i{s considered to be a register, and all others are

external lines,

_A second STRUCTURE statement is the INIT (initlate) Statement

previously discussed, Its syntax isi

__INIT <process name>i<priority>,<variable> = <value>)

____<process name>

{s the name of a process which performs a particular

__interface task,

<variable>

is the name of the variable which initiates a process, It

may also be a Boolean and/or arithmetic expression invelving

___any previously declared lines, or a compound,

<va1ue?

is the binary or octal value of the variable

wh;cpr‘isw to

initiate the process,

/ Is a 0 to { transition of a single bit
T\ is a'i to 0 transition of a single bit

E R T R i, A e
. <priority> it - e
Ledigid o ~4s the interrupt priority of the process,
S T ~ Default i{s to the lowest priority declared, 8
EXAMPLE:
e INIT teletypesi,statuss/ ot _ 3
z Process teletype is initiated when a line called "status" by the
programmer goes from O to | and the teletype process has priority
7 level 1 (level 0 4is highest priority), In the UNIBUS
" description, the structure is based on a bus arbitration
i mechanism, as shown in Figure 9, The dalsy chaln processes in

~ the first level of nesting allow bus request and grant signals to

“travel properly up and down the UNIBUS, The arbitration process,

“also In the first 1level, has nested within Itself the bus

~ granting processes, The process structure (Figure 10) should
‘clarity the configuration described,
- _ FIFO gqueues can be declared with the BFR (buffer statement),
; with this syntax: .= = == 00 et s s e il -
BFR <name>(length]"<"<width>">"y
ol s N AP N el L oL A e MR Y I
E 1s the name to be assigned to the buffer for later program
‘ g = use, =y
__[length] Pr I ay WA St L l W
is the number of words in the buffer queue,
<width> -
. is the bits in each word, === et

b o

EXAMPLE}

~ BFR DISKQUEUE([4096])<32>
This statement establishes a buffer of length 4096 words,

each word 32 bits {n length,

" In the UNIBUS description, there are two declaration types, For

example:

The QC indicates cpen collector,

__OC\MSYN<0>j; describes a single bit line named "MSYN,"

5 INT\adatareg<i5:10>) defines a {6 blit {nternal data
e oy " register named “adatareg," i AT o R

R B o

- Sesimamares S

i
i
i
i

Device A Device B
N
npra nprb npre
=NPR npgb npgc
npga=NPG
Processor
Figure 9. A Block Diagram illustrating Naming Convertions

for the Bus Grant/Request Lines of the Arbitration
Mechanism.

MAIN PROCESS UNIBUS a
,__ﬁ_*u_*ﬁ,,_mDGGESEQS!Q“!.__ e L vetle i Ry
o Compound Declarations
i iﬁtt‘i?ﬁ?i?ﬁ?ﬂiiékn(f”"”"‘”“'”’” I T e
INIT ndaisychaini0, (npra OR nprb OR npre W
OR nprd)sl
REERTE T, ~_INIT 6daisychaini0, (bréa OR brédb OR bréc
OR bréd)si
T | |) . ITS for priority levels 4,5,7}
PROCESS ndaisychain e
[]
e — — e e — e — P . e ——— ————————— e ——— ———— — e i
[]
e END o B i N CRR P R g B DO (AL
PROCESS 6daisychain
[)
el e e T i P 3 . S S SR e e B e
[]
T SR S e B S S
{PROCESSES Sdaisychain, 4dalsychain, 7daisychain}
PROCESS arbit
R AR N “INIT nprgrantti,NPR=l) B I R p
e j7”__h_~_____n”__“_M_____w_;NIT_pRAqrgnt:s.(bq.enable7AND_BR4)=11
INIT BRSgrantid4,(bg,enable AND BRS)=3{}p
INIT BR6grant:3,(bg.enable AND BR6)31j
INIT BRYgranti2,(bg.enable AND BR7T) =1}
e e e
L]
R B — . —_— e S . e e
END
L
[]
e i e e e B— .._._____~__..-_ e ey e e . e e e ———————— ———— S — S, B
END

tigure 10, Process structure of UNIBUS Bus Arbitration Mechanism,

|
e S TN T

ey
e

W T - a——

44

Code conversion is often done by table lookup, (0f course,

hardwired 1logic is also used for this purpose and can be described in
GLIDE with DATA CONTROL statements to be {ntroduced later), GLIDE has

special primitives for table lookup, after the table has been declared

with the table instruction, The syntax for this isi
_TABL <name>[length]"<"<widthi>"><"<width2>">"

which is used to set up a table for code conversion when

conversion must be done by table lookup,

<widthi> and <width2> refer to the bit widths of the Iinput

and output words respectively,

<name> and <length> are the same as the Buffer statement,

Table entries £0l)low immediately atter the table

<encoded value>a><decoded value>

<encoded value> {s an input code table entry.,

<decoded value> is an output code table entry,

An example of this is}

TABL grey [4]1<2><2>

00=>00

01=>04

103>11

112>10y

pescription of synchronous 1/0 s difffcult Pecause of the different

implementations of hardware which perform synchronization, GLIDE

allows only a limited description of synchronous I/0, Synchronous

lines are declared with the synchronize statement, with syntax:

!
|

00 IS e SYNC <name>"<"<length>">"g<time> e S el
This describes the synchronization mechanism for 1npu;tipg_____
g B H and outputting synchronous data from magnetic tape, magnetic
. disk, and synchronous data links, = === 5
<name>
Dp SRR {s the variable name of the synchronous line(s), == 3
<time>
W . S ~4s the cycle time in clock perdeds, ===
= T T <length> 7 B T S Te t o WL e e T e
{s the length of the word shifted In parallel during each
TN Ry T synchronous cycle, i R AR ST
EXAMPLES; SYNC tapei1<830>@10000
ST T TR R deseribes the synchronous transfer of 9 bits {n
g e “parallel onto/off a bus called tapel at a
frequency of {0 usec,
3 ____ SYNC diska<>@9000 00
describes the synchronous shifting of data onto a

The use of synchronous variables in a GLIDE description _!111 be

" single line called diska, at a %00ns rate,

__described later,

W a - -

———

!The following declarations are compound expressions. This means

that there exists logic to continually evaluate the follouing
expressions!

dvaddress: =a<8> AND a<l> AND (NOT a<2>);
dati:=(NOT CB) ANO (NOT Cl));
pdati:=(NOT Cl1) AND C8;

dato:=(NOT CB) AND Cl;

bdato:=C8 AND C1l:;

p.error:=(NOT PA) AND PB;
no.error:=(NOT PA) AND (NCT PB);

Figure 11. Compound Expressions From the Bus Example.

——— _#‘M

47

In order to declare snchronous lines, however, a clock must also

be declared, The clock statement allows description of a simple
clock, The syntax is:

CLK <periodd>;

~ where <period> is expressed in nanoseconds, The default clock period

is one nanosecond, One extremely powerful statement used {n

conjunction with Declarations is the Compound Declaration. This

instruction has the forms

<name>i=<expressiond>,

<name>z=cexpressiond, see I

" variables, It ls continuously evaluated and is useful for =

<name> {s an {dentifier and <expression> s an arithmetlic

and/or logical expression using previously declared =

describing cembinational logic 1ike address recognition

nardware,

Figure 1{ contains the Compound Declarationsg found in the UNIBUS

description, dvaaddress is the address of device A, dati, pdati, dato

and bdato refer to the modes of data transfer (daty, datip, date,

datob) on the bus, PABB indicates parity error, and PABB 1nd1catgs no

error,

T SEQUENCE CONTROL Statanents e A

“All of these declaration statements precede the Data Control and

SEQUENCE CONTROL statements In the MAIN PROCESS and the subprocesses,

48
Many of the Sequence Control Statements are conventional, but a
few have features not found in other HDLs, These less-conventional
instructions will be described first, . E BN E 3

The most powerful of these {s the Delay Until Statement: <

DLAY <range> UNTL <variable>={<variable> <value>}

THEN <branch> ELSE <error>)

" This statement delays the process execution for a specific time or

"7 7 untl] a varlable reaches a gliven value or equals another variable, 4

__ <variaple> il e, I

T 777 {s a variable named in a structure statement, §

|

__<valye> e R S e g S R

N "~ {s a value expressed in binary, octal or decimal, i 3 ,
~__<branch> B s -G o IS 1 N = B

~ i{s a program label branched to if equality condition {s met in the

given time period,

SRR ESE S

i{s a program label branched to if equallity condition {s not met In the

~ " qgliven time perioa, : ¥
<range>
T is a range of values of time the delay ls to last, s i

e o

49

Here are some simple uses of the DLAY statement: DLAY 4000y

This statement delays the interface 4 usec (assuming & ins clock),

DLAY UNTL cheeckz001)

This statement delays the interface unti{l the variable checkz00{, and

then continues program seguence,

DLAY 5000 UNTL instracodel THEN read ELSE writej

_This statement delays the interface Susec or until the variables instr
_and codel are equal, whichever comes first, It branches to "read" for

equality and "“write® {f time runs out,

~ This statement i{s useful for describing skew of 1lines and timeout

~ conditions, The range o¢ delay ¢times is useful when specifying a

potent{al busg design where variable length delays or timeocuts need to

pe specified, The Delay Statement {s used widely in the example bus

~ descriptien, For example, inside the 6dalsychain PROCESS, DLAY UNTL

BG6m/, implies a suspension of PROCESS execution untll BG6 has an

" upward transition (symbollzed by the forward slash "/"), Inside the

" NPR grant mechanism DLAY7TSy] is a 75 nonosecond delay to allow for
signal skew, Then, DLAY 7500+=2500 UNTL 3ACK={} {ndicates that the

“PROCESS suspends walting f£or SACK to have a positive transition but

- only for 3«10 microseconds, depending ori the bus implementation,

Another useful statement iz the Parallel Branch Statement, used

__to allow execution of multiple {nstructions at one time,

This

statement s paired with the MRG (merge) statements at the end of each

___paralel branch,

PBR <labeld,<labeld,,..,<label>i [FRUN/SYNC])

___This statement performs the following sections of code

] i i referred to by labels, either statement by statement
| synchronously or on a free=run basis,
1 FRUN e e e e e S i U
RS " signifies free run execution, Statements in each code
segment are executed as soon as previous operations are
. completed, e A e e e e
SYNC
s b indi{cates that statement executions in each code segment are
=L _____to be synchronized, In other words, the nth statements in
3 all code segments are executed simultaneously,
BT ' Examples; . A R R G
e . PBR input,convertiFRUN) g
input)
oo o — =
MRG}
... convert ., + o ot e EOE o T U L o
o e
L . MRG) it et A W
) This set of statements causes the section of code labeled
_________input to be executed simultaneously with the section of code
P ___labeled convert, MRG indicates a merge at the end of each
segment, -
T 7777 T PBR eutput,checkiSYNCy
¢ .tput siatementily;
gstatement?2)
MRG}
check statementiy K
k % W W ___statement2; e A e ke
3 MRG)

This set of statements causes statements 1 to be executed

51

~ simultaneously and statements 2 to be executed

~simultaneously,

Two other interesting sequence control structures, WAIT and an error

~ branch associated

with bpuffer accesses will be discussed later with

thelir assoclated Data Control Statements,

__found in conventional microprogramming languages, These arei

_The other statements used to control program flow are like those

¢ Compare statement

CMP<sourcei>i<source2>*a> <branchi>,a> <branch2>;

____ Compares values of two variables or a varjiable and an

{nteger value (second source field), 2

"a><branchid> S o SRR
T T implies branch for a not equal condition, while B
. ®> <branch2> i S s et e et
. means branch for an equal condition, ===

Here (s a simple examplet SR
L il o B CMP check1123%=2> error,=> okj PO P I s (0 S ST

¢ Call subroutine statement

LA CALL <subroutine label>; S mti

The next statement executed will be that labeled, ng;rol

. __4s returned to the statement following the call statement

52

when a RETURN command is encountered in the subroutine,

e End subroutine statment

RETURN} FEIRNr. |

__Ends a subroutine and returns control to the calling site,

TR TR FoARBEY s e A el i
Terminates a process description, =
= e No Operation Statement T g
NOPy s used primarily when ¢two segments of code are
cplei b s] _ﬂ_!%9¢QE£9_iE_Eﬂfﬁili¥.E9¢_!!!~§¥QEB!9ﬂ?z€EJ.#“M ety P L A e
E " e Serial Braneh Statement 5 g iy
o e ~BR <label>) {s an absolute branch, ===

" e Loop Statement

. _LOooP<statement label>,<repetitions>)

CEERET i 2 R This statement executes all statements through the labeled

5 statement the speclflic number of timeés, an integer value,

____Exampley

LOOP done, 3 e s
i ... <statement 1>) o gt
dones ~ <statement n>j)
ThRis executes statements I through n three times,

53
® Run Until Statement
F 'RUN <label>UNTL<variable>={<variable>/cvalue>)
THEN <branch>j
= This statement is similar to the loop statement but
" terminates when a particular condition 4is reached, then
' branches out of the program, Testing i{s done at the start
of each loop, 1If THEN <branch> i{s omitted, execution picks
T 7777 777 Tup at the tirst statement after the loop, S0
Examplet it
NSRS AL DA RUN proeci UNTL vard=var4 THEN {nterrupty ==
ML e o AT — 1 B T D R B e R
L] [] []
T Proeis B End of loop i i
e 1] l“] Y = . =
interrupt! New code segment begins here, e
e Set statement b) T N T e 00 PO 4
Set <labeld>y il

This sets an {nterrupt 1ine from the interface, The

7 77 interrupt line may be any declared external variable,

IR RSET <labeldy

This resets an interrupt line,

LB IR LI - S = . el SN 5_‘;__, Sia P

The example bus description uses the compare statement in the daisy

__chain processes, CMP bréail => done; causes control to go to the

__"done" label, If not, control flow continues to the next statement,

Control normally flows from statement to statement, with the

" delimeter between statements being a semicolon, If two statements are
= " to be executed in the same clock period, however, the ; delimeter can
be replaced with ALSO, For example,
T S A< | ALSO B< {) = . L
- e T = = e e R e e SR By A e T M
causes A and B to be set to I then C to be set to 0, i
t — —— e e et e et R R A —

55

S IHE RAIA CONTROL ;gazanc;;gg; e R

With one exception, the DATA CONTROL statements all have the same

structuret e 3
<destination><<soyrce expression> Sy i
- <destination> L R I E R e)

 {s any name bouynd to a hardware structure (i{.e., external
l1ines, Internal registers, buffers, synchronous 1llnes, — ~
= i ._:.c.) . e e R ST E SR e) o

<soyrce expression>

i3 a variable, value, compound, arithmetic and/or logical

oLy expression or an expression using the operators described
below,
o Arithmetic operators: S e S T T T
o 2 + addition T pheg U S e P S M
. subtraction
I - multiplication G DTSR
/ division S R |
o Logical operatorss SR I U T
e A S AND logical and of both operands - 3 3
OR logical or of both operands
L ST XOR logical exlusive or of two operands B =
NOT logically complements source and places {(n
destination 1

The logical operators are used widely {n the COMPOUND, DLAY and

___INIT statements, For an example see Figure il which contains compound
__expressions from the bus example, The INIT statement uses logical

operators widely, as in this statement from the UNIBUS description:

" INIT 6daisy chain:i0,(brsa OR bréb OR bré6c OR bréd)z{y;

Of course, the simple source=destination transfer is widely used

___in the example, BR6<—1) 1s one instance of this, ool DU
K " There are seven primitive I/0 operations, The ¢first two are
Encode and Decode, i
ZoABNCRSCARRNRTE: o e T e e e el e
Encode from binary using the table specified, This operator returns 0
_ it the value canot be encoded, Cholces of tables are UNARY, GREY,
__HAMMING and DISTANCE 3, S .
DCO (<tabled>]y
. Decode into binary using the table specified, returning 0 1if net
_decodsRle, @ 2020002002 e i e
~ It should be noted here that other encoding/decoding problems have to
be declared explicitly usng the TABL declaration, Here is an example
P ot both methodst .
B e ~ TABL grey([4]<2><2> -
60 00
01 o014 ‘
10 11 -
1T 10 o '
- . - This table {s accessed by the statement: 8

<destination> <table name><source>;

or for this instances

(1) A<130><—grey’10)

7

and the value {n A = 11 at the end of execution,

(2) A<130><—ENCIgreyl’10;

{s an equivalent statement, The inverse of this statement

_isy

A<110><-DECIgreyl ity

and the value returned is 10,

Formatting can be as simple as concatenation or as complex as

T (FMT) provides a general mechanism for this,

T checking, are impoertant functions performed by ports and interfaces,

" intermixing of two operands in a random pattern, The Format Statement

~ Besides the encoding data function, formatting, packing and error

T the

FMT <scurceil> (<pattern»] <source2>;

~ where <source{> and <source2> are operands or values and <pattern> is =

a pattern of » and /, An * {ndicates a bit taken from sourcel and a 7

indicates a bit from sourcez, The absence of a pattern i{mplies

concatenation, For examplet

N e asTi0><—FMT *0000[#/w/%/%/71°4 488y

returns the value ’0i01010f, (" Indicates a binary value),

Packing and unpacking bit slices from words is less complex, and

the Paek (PAC) and Unpack (UNPAC) statements provides for th{}.

PAC(<variable>) packs a bit slice into the position

o EE e

specified by the <variable>, UNPAC(<variable>) returns the slice from

__the word, For instance;

_ h<310><" PAC(1)B<110>y

places the B bits into the lowest order (1 and 0) bits of A,

___A<310><—UNPAC(2)B<15:0>)

places values from B<714> into A,

Parity byt generation and checking Is done with a set of

" statements, the Test and Parity satements,

PARE <source> generates an even parity bit and PARO <source>

___generates an odd parity hit, TSTE <source> and TSTO <source> pertorm
___a parity check and return a ‘f parity is valid, a 0 if there is a

parity error,

" The last two statements to be presented concern synchronous data

transfer and buffer accesses, Since the variables permitted in GLDE

statements may be one of several d.Zferent types, some comments
~ concerning the use of each type should make their intent clearer,

Use of a variable declared in a BFR statement carrier with it an

_4dmplicit buffer memory access, The total number of items stored in
__the puffer may not exceed the declared size, If it does, an error

signal will be generated, and the most recent store will not be

completed, The error will be detected if a statement label s
attached to the buffer name in the execution statement with a "i1",

For example, in the statement FIFOIbfrful<«Aa<730>y it FIFO {s a

declared buffer memory 4and execution of this statement causes it to

59

overflow, the next statement to be executed will be “pfrful.,* The

defauylt error branch also applies to buffer accesses when an empty

condition occurs, A<—FIFQiBfreptys

implicit synchronous transfer of the data, For a parallel tranfer,

the word 1length of both source and destination must match the

synchronous var{able 1ength, For serlal transfer, the synchronous
~ varlable (s always of length i, so the other variable may be of any

~length greater than or equal to i, For the parallel case, the meaning

‘Use of a varlable declared in a SYNC statement carries with it an

of the transter is cleary ¢for the serial case the transfer means that

~ a shift takes place at the frequency specified (with no extra delay

~ when the shift register 1s loaded with a newv word or emptied), If a

delay {s desired, [t may be achleved by using the DLAY statement,

___Immediately after a synchronous variable is accessed/stored inte

a shift register, a WAIT statement must be used to allow time for the

__data to be synchronously input, Here is a brief example,

~ In the declarations we find:

SYNC disk <0> @ 2007

which means we have a synchronous line caled disk which

sustains a data rate of | bit every 200 s,

In the body we findi

LOOP done, 32

A<31> < disk}

A<—A/23 ishitt right A =

donet WAIT) &
e ““whieh £411s A off the aisk,

61

Lie £2ICLUSIQNE AB0 DISCUSSLZY

GLIDE has grown from a microprogramming language for a

generalepurpose 1/0 processor to a descriptive language for I/0,

{nterfaces and buses, while no apologlies are made for the syntactical .l
artifacts of the microe=language, we should stress that GLIDE {is

evolving and continually changing, It has proved i{tself adequate for

the UNIBUS descriptive task, a nonetriv{al problem, A compiler

- exists, and a simulator is being written,

The simulator will allow research to proceed in studying bus

____structures, 1I/0, and multiprocessor communications, It will also

___provide a tool for teaching the above in an interactive fashion,

_________ ALXYDJLELLEAENLS Lt LI D TP A

The author would like to acknowledge the ass{stance of two people
" whose efforts made this paper possible: Bill Lyden, who wrote the
original GLIDE compiler, and Andy Nagle, who labored over the language
itself, o
!
i i e e T L

(Bell71) Bell, G, Gordon and Newell, Allan, Camputer

‘Stzucturesy BReadings and Examples, MeGraw Hill, 1974,

(Curt71) Curtis, Richard, "IDS, An Interface Description System,*

__unpublished document, ALCOAR, November, 1975,

(Knob75) Knoblock, D,E,, Loughry, D,D, and Vissers, C,A,s, "Insight

= Into Interfacing,” IEEE Spactrunm, Volume 12, Number S, May,

1975, pp. 5057,

and Function of a General Purpose Input/Output Processor,"

__(Loug74) Loughry, Donald, "what Makes a Gocd Interface," IEZL
B ___ Smectzum, November, 1974, ’ RREY A
2 (Park77a) Parker, A,, Nagle, A, and Lyden, W,, "The Developmeént of a
i IS o Hardware Descriptive Language for Interfacing," Department
- of Electrical Engineering Technical Report, Carnegie=Mellicn
University, August, 1977, i
______ (Park77b) Parker, Alice, Nagle, Andrew and Gault, James, "Structure

~Carnegie=Mellon Universty, August, 1977,

(Rlec74) Ricel, David and Nelson, Gerald, ®Standard Instrument

unpublised paper, Department of Electrical Engineering,

" Interface Simplifies System Desgn," Electzanicsg, November
14, 1974, r ' B
§ (Siew74) Siewiorek, Daniel, "Introducing ISP," Cemputer, Volume 7,

Number 12, December 1974, pp, 39=41,

(Viss76) Vissers, C,A., "Interface, A Dispersed Architecture,"”

E AT Proceedings of Third Annual Symposium on Computer

Architecture, 1976, pp, 98-104,

APPENDIX II 64

IThis is a partial description of the UNIBUS operation. In order to
make the description complete, the daisy chain bus request and

grant signals are included, but only specified for four devices for
each level of priority, devices A,B,C, and 0, where A is electrically
closest to the processor.

A GLIDE description contains a main PROCESS and as many nested sub-
processes as possible to describe a set of interfaces connected together.

In each PROCESS, including the main one, there are declarations

which define the structure of the interfaces, and sequence statements

which describe the operations. !

MAIN PROCESS UNIBUS

!Here we have declared the main process!

'Signal lines!

OC\a<l17:08>; laddress |ines,open collector!

0OC\D<15:8>; !Data lines, open collector!

OC\CB<8>; lcontrol bit!

OC\C1<1l>; lcontrol bit!

OC\MSYN; Imaster sync linel!

OC\35YN<@>; Islave sync |ine!

OC\PA<@>; lparity |inel

OC\PB<@>; Iparity line!

OC\INTR<8>; linterrupt line!

OC\BR4<8>: 'bus request line, priority level 4!

OC\BR5<8>; lbus request line, priority level 5!

OC\BRG6<8>;)

OC\BR7<8>:

OC\BG4<8>; lbus.grant line, priority level 4!

OC\BG5<8>; '

OC\BGB;

OC\BG7<8>;

OC\NPR<@>; non processor request line!

OC\NPG<8>; lnon processor grant line!

OC\SACK; Iselection acknouledge!

0C\BBSY<8>; 'bus busy!

OC\bg.enable; !bus grant enable (set/reset by processor)!
INT\interrupt.vector<15:8>; !interrupt vector internal to device!
INT\slave. address<15:8>; !slave address used by device B for NPR!

!The following lines make up the daisy chain bus request and grant
mechanisms. Each part of the chain is specified as a separate
line for ease of description!

OC\brBa<@>; !line from the devA to the grant mechanism!
OC\br6b<@>; !line from the devB to devA!

0C\br6c; !line from devC to devB!

OC\brBd; !line from devD to devC!

OC\bgba<8>; fgrant line from grant mechanism to devA!
0C\bgbh<B8>; lgrant line from devA to devB!
0C\bgBc<8>;

OC\bgybd;

OC\npra<8>; !The same for nonprocessor request and grant lines!

OC\nprb;
0OC\nprc<@>;
OC\nprd<8>;
OC\npga<8>;
OC\npghb;
OC\npgc;
OC\npgd<8>;
INT\adatareg<l5:8>; !data reqister in device A!
INT\bdatareg<15:8>; ‘'data register in device B!

!The following declarations are compound expressions. This means
that there exists logic to continually evaluate the following
expressions!

dvaddress: =a<8> AND a<l> AND (NOT a<2>);
dati:=(NOT CB) AND (NOT Cl));
pdati:=(NOT Cl) AND C@;

dato:=(NOT C8) AND C1;

bdato:=C8 AND Cl;

p.error:=(NOT PA) AND PB;
no.error:=(NOT PA) AND (NOT PB);

INow come a series of initiation conditions for various
"processes". These are declared now, but the processes are
initiated whenever the conditions become true, and the process
has higher priority than any other process which also has met
its initiation conditions!

INIT arbit:8,SACK=\;

!the above statement initiates the arbit process with 8 priority,
uhenever the SACK |ine has a negative transition!

INIT dvaslave:8, (BBSY=/ AND DVADORESS) = 1;

!Device A is initiated as a slave when bus busy is asserted high,
and the device address has been decoded!

INIT Bdaisychain:@, (br6a OR brBb OR brBc OR brBd)=1;
!6daisy chain is the daisy chain mechanism for priority level B!
INIT ndaisychain:8, (npra OR nprb OR nprc OR nprd)=1;

lthis is the daisy chain mechanism for the NPR requests!
IThere are similar processes for the other priority levels!

PROCESS 6daisychain

BRB«/; 1Send the bus request through!

DLAY UNTL BG6=/; !Wait until the grant signal comes back!
bgbBa«/; !device A, closest to the processor, gets the grant!

CMP brBa:l => done; _

!compare bus request from dev. A to 1. [f equal, then you are
done. Otherwise, pass it on!

bgBbe«/; .

65

e T " m

66

CMP brBb:1l => done;
bgBce/;
CMP brBc:l1 => done;
bgbde/;

done: end; !end Bdaisy chain!

PROCESS ndaisychain
NPR « /;
DLAY UNTL NPG = /;
npga « /3
CMP npra:l => quit;
npgb « /3
CMP nprb:l => quit;
npge « /3
CMP nprc:l => quit;
npgd « /;
quit: end; !end daisy chain for NPR!
PROCESS arbit
INIT npr.grant:1,NPR=/;
INIT BR&4.grant:5, (bg.enable AND BR4)=1; ;
INIT BRS.grant:4, (bg.enable ANO BRS)=1;
: INIT BRB.grant:3, (bg.enable AND BR6)=1;
INIT BR7.grant:2, (bg.enable ANO BR7)=1;
!|These grant mechanisms are initiated in a priority order!
!For simplicity,only the priority level 4 and NPR levels will
be shoun!
DLAY UNTL (NPR OR ((BR4 OR BRS OR BRE OR BR7)AND bg.enable))=1
!As soon as one of the lines is raised, the PROCESS ends, to
prevent any other PROCESS from now being started. Otherwise,
a higher priority PROCESS could be started!

END; !End of process arbit!

PROCESS npr.grant

DLAY 75;

NPG « /;

DLAY 7588+-2588 UNTL SACK = /;
NPG « \;

END;

PROCESS br4.grant

OLAY 75;

BG4 « /;

DLAY 7508+-2588 UNTL SACK = /;
BG4 « \:

END;

PROCESS dvamaster

IThis process describes the sequence device A goes through to
interrupt the processor!

IThis device is capable of bus mastership and has priority level
6. It is wired closest to the processor of all priority level B
devices!

MRATA ol oo i O e o o LS

brBa « /;

!The device requests bus mastership by raising its bus reduest line!

IThis causes the daisy chain for priority level 6 to be initiated
and subsequently causes the arbitration and granting mechanisms to
be initiated!

DLAY UNTL bgBa = /;
Wait for the bus grant!

SACK « /;
!Acknouledge the bus grant!

PBR one, tuo: FRUN

!This construct, the parallel branch(PBR), forces execution of
code segments labeled “one" and "two" to be done at the same time,
but not in lockstep(FRUN signifies this)!

one: DOLAY UNTL BBSY = \;
BBSY « /;

'Wait until the bus is no longer busy, then make it busy!

D<15:8> « interrupt.vector

DLAY UNTL SSYN = 8;

INTR « /;

DLAY UNTL SSYN = /;

D<15:8> « @;

INTR « \;

ISSYN and INTR are handshake |ines!

BBSY « \;

MRG; lwait for "two" to finish!
!End "one" code segment!

two: DOLAY UNTL bgBa = 8;
SACK « \;

MRG; lwait for "one" to finish!
!After the gran line goes away, the SACK line should too!

END;
IThis is the end of dvamaster!

PROCESS dvbmaster

IThis is a device which does an NPR (non-processor request)
and is electrically second closest to the processor!

IFor this proces;. it does the DATI operation!
nprb « /;

!Request bus mastership - start the daisy chain!

67

68

DLAY UNTL npgb = /;
Wait for the bus grant!

SACK « /;
nprb « \;

OLAY UNTL BBSY = \;
BBSY « /;
Wait until the bus is not busy then get it!

A<l7:8> « slave.address;
C8 « B ALSO
Cl « B; !This is the code for DATI!

IDATIP is similar except the CB and Cl code is different!

DLAY 158;

DLAY UNTL SSYN = @;

MSYN « \;

DLAY 10888 UNTL SSYN « /;
bdatareg « d<15:8>;

MSYN « \;

DLAY 7S

A<l17:8> « @;

C8 « 8;

Cl « B;

BBSY « \;

END;

IEnd of device B DATI, (PRACESS devbmaster)!

!For DATIP, BBSY would have stayed asserted, then the output
cycle would have begun just as in DATO or DATOB!

PROCESS dvaslave

!This describes how device A responds as a slave device to DATI,
DATIP, DATO, and DATOB!

DLAY UNTL MSYN = /;
CMP DATI:1 => in;
'1f DATI =1, the master wants to input data, go to

" in"!
CMP PDATI:1 => in;
IThis is the same as DATI from the point of view of the slave!

CMP DATB:1 => outword;
Master wants to output data to slave!
outbyte: CMP A<@>:8 =>higher;
lower: adatareg<7:8>+0<7:8>; !get lower order byte!
SSYN « /;
DLAY UNTL MSYN = \;
BR finish;
IGo to the finish!
higher: adatareg<l5:8>«d<15:8>; !Input higher order byte!

INOTE - in reality the adataregister is only 8 bits long when
bytes are transferred. 1t was described this way, so that both
word and byte 1/0 could be covered!

SSYN « /;
DLAY UNTL MSYN = \; -
BR finish; ‘
outuword: adatareg « D<15:8>; |
SSYN « /3
DLAY UNTL MSYN = \;
BR finikh;
ins D<15:08> « adatareg;
SSYN « /;
DLAY UNTL MSYN = \;
0<15:8> « 8;
finish: GSSYN « \;
END;
END

IThis ends the UNIBUS description as far as it is implemented!

APPENDIX III

Register-Transfer Level Digital Design Automation:
The Allocation Process

Lows J. Hafer
Research Assistant

Alice C. Parker
Assistant Professor

Department of Electrical Engineering
Carnegre-Mellon University
Pittsburgh, Pa.

ABSTRACT

This paper presents a portion of the register-transfer level
compuler aided design (RT-CAD) research al Carnegie-Mellon
University. This part of the research involves the design and
construction of an allocator, consisting of a set of algorithms and
data structures which synthesize hardware at the logical level
from a behavioral description. Preliminary results indicate the
allocators performance compares favorably with a human
designer.

[Introduction .

The research described in this paper represents a portion of
the overall Register-Transfer Level Compuler Aided Design (RT-
CAD) effort at Carnegie-Mellon University. This is a continuing
reccarch project which grew oul of an imlial design automalion
system reported in [Barbacci 75] The present system differs
from convenlional CAD systems in that the input to the system is
a behavioral description of the hardware to be designed. Modules
in the system include a compiler for the input hardware
dencriptive language, ISPL, and a simulator. Currently under
conslruction 1s a module which seiects the design style for the
logic to be constructed [Thomas 77). Manipulation of a data
structure derived from the input description in order to oplimize
price/performance constrainls has been investigated by [Snow
78] The allocator routines, which occur after this manipulation,
output a fogical decign which 1s transformed by the data-base
module into integrated circuil chips and interconnections. All of
the modales, with the exception of the data-base, either function
independently of or telative to the contents of the data base
module <els. One of the allocation routines, the distribuled logic
allocator, 15 the subject of this paper. A more detailled overview
of the system can be found in [Snow 78]

Il Allocator Overview

After the algorithmic description (ISPL) of the system to be
designed has been manipulated by the higher level design
routines to achieve the price/performance objectives provided
by the user, il 15 wsed as inpul to the allocation routines. The
allocators fall into two categories, data-memory and control. The
data-memory allocators perform a mapping function from the
alporithmic description to the data part of the hardware
implementation. The dala parl 1s considered to consist of the data
storage elements, data operalors, and data paths (including

The research described in this paper was supported in part
by the US. Army Research Office under grant « DAAG29-76-G-
0224

15213

mulliplexers and demulliplexers) necessary to implement the
operations specified in the algorithmic description. It should be
noted that due lo the characleristics of the ISPL language, this
mapping may be ore-to-many or many-to-one, rather thar a
simple one-lo-one translalion, The control allocators perform a
clightly different function,mapping the timing, sequencing, and
branching information implicit in the ISPL description onte control
states, control signals, and conditional hranching signals to
conlrol the data part. Again, the mapping is not a simple one.

The allocator descrihed here is a data-memory allocator for
the distributed logic de<ign style. As we pointed out earlier, the
allocator ilwelf 15 technology independent, and the mapping of
data operalions onto <pecific integrated circuit packages is
performed by the dala bace module. The data-base module can
be updaled as new packages are added to the module sets. It
should be underslood that the process referred to as allocation
throughout the remainder of this paper is a logical allocation in
terms of a pgeneric set of data storage elements, operator
primitives defined by the ISPL language, data paths, and the
abstract switching functions muitiplex and gemuitiplex.

The first version of the allocator is experimentai, and it
performs oniy minor oplimizations on the designed hardware.
Rather, it has been designed to illustrate :

¢ The feasibihity of hardware synthesis from an ISPL
description

-

The independence of the allocator from specific integrated
circutt moduie set information

-

Information neceasary to fhe design process which cannot
be expressed in ISPL

-

The types of data structures needed for the allocation

»

Bounds on the size of the ISPL input description that can
be processed by the system

-

Exceptional constructs possible in ISPL which may be
difficult or impossible to design or implement in hardware

Types ol error checking that can be performed by the
allocator

-

Arcas where optimizations are possible in fulure, more
sophisticated allocators

In addition, the allocator has been designed as a possible skeletal
structure for fulure allacators in order to ease the programming
overhead and standardize input/output formats and data
structures,

In the following description of allocator structure and
function, we attempt lo extrapolate details learned through
implementation into a basic plilosphy of allocator design. The

procedure uced by the allocator might be compared to a two
pass compidation. The hirel pa<s may be concwdered as a synlax
and feasibility check. The allocalor inpuls a parsed [SPL
description, conalructs dala structures analogous in function to
symbol lables, and enforces various constraints necescary o
nsure that the data -lorage locations, logical mappings, and
mput/output intertace characterichics specihied in the description
can be implemented in hardware. I no errors are encountered, it
praceeds to allocale the ba<ic data storage structures called for
in the description, and any additional data paths, storage, and
operators nececcary to implement variable acce<sing, schemes
deseribed by the logical mapping faciity of ISPL. The second pass
may be concidered as the semanlic phace with the activity of
code generalion replaced by the allocation of data paths,
operalors, and additional storage as neecded to implement the
functions «pecified in the ISPL description. Paralichem analysis is
performed at several levels to warn the user of error conditions
(array acess conflicts; varable value ambiguty due to parallel
asaipnment/uce) and aelermine conelrants relating, to
optimization of the hardware The allocation is then compieted by
the addition of multiplexing where nececsary

Allocation differe from compilation, however, in that in a
compilation one i concerned with wiplementing the specified data
operations on a lixed dala part who<e capabilities are known a
preore. In allocation, the allocator must be able lo recall and
ultlize the capabililies of a data part wiich 15 being dynamically
crealed. The allocator thue worke from the incide out, firet
creating the data <torape and accecs <tructures, and then adding,
the nececcary data pathe and operators to perform the decired
data operatione in addition, the culpul of the allocator 15, in the
general cace, o non planar directed graph, rather than a hincar
et of compiled in<truchione

The central concept used in the allocation proce«s s the
operation path In the oot penecal cace, thie consicts of two
cources, an operator, and the data palhe from each <ource to the
operator. Thie concept wae vien as the bace because the
opeoration path i the namirmal it wineh can be considered when
analy zing ftor poccibie paralicham conflicte during optimization to

roduce the number of allocated operitors. Throughout the
foliowing, allocation des coplion, the term path will mean operation
path, whule the phiyacal data path belween a source and a
deatination wall be referred Lo as a hink,

The detailed deccription of the allocater will focus on the
allocator iripule, data <tructures, agenthme, and oulpuls.

111 Allocator Inpuls

The primary mpul s the compiied 15PL description, in the
form of a «ymbol Lible and a «tatement table. This input s
augmented with information supplicd by the user in the form of a
“technical file” Thie file containe fwo types of information :

+ Giobal information about the deccriplion which cannot be
aprcified in 15100

t Interface mformation 1o be pacied to the module data base
for «olecthion of <pecific 1C« This information describen the
decired logical and electrical characleristics of the inpuls
and outputs of the device beng allocated.

A «mall portion of the ISPL deccription of an elevator controller
is shown in fig 1, along wilh relevanl portions of the compiler
symbol table and <tatement table. This de<cription will be used as
a running example in describing the allocator. The technical file

for the conltroller 1= shown in fig. 2. The PROCESS specification
indicates that lhere are two <eparate asynchronous control
environmenls present in the complete controtler description. The
input and oulput hines and their characteristics are specified
under the headings INPUT and QUTPUT

IV Allocator Data Structures

As shown in table |, the allocator builds seven major data
structures daring the allocation of an ISPL description. The first
three, along with the compiler symbol table, comprise the portion
of the data «tructures which function as symbol tabies for the
allocalor. The path graph (fig. 3) contains the allocated data part
of the device and 15 the primary oulput from the allocator. The
path table and palh parallehom table are the major working data
structures. Although the inlernal details of these sltructures are
not importanl, certain overall characteristics should be discussed.

! technical file for elevator control

PROCESSG. ¢ MAIN , LOOK.FOR.CALLS ;
TNPUT ¢
' inputs for LOOK, FOR.CALLS

mp.call = fevel doun / elec ttl
doun.call = level doun / elec ttl
button = level doun / elec ttl

fig. 2 Techmeal File for LOOK FOR.CALLS

Dala Structures

1) Procees Tabie: one enlry per process, records variables and
defined procedures used by each process

2) Called Procedure Table: one entry per defined
procedure, records procedure usage
informalion

3) Allocator Symboi Table: one entry per allocated variable
(includes mputs and outputs) Contains
physical characteristics of the variable

4) Operator Table: performe symbol table function for all
allocated operalors

5) Path Graph: graph representation of the data part
Contains all allocated variables, operators,
and links

6) Path Tabie: per process record of paths used by the

1SPL description

7) Palh Parallelism Table: per process record of
paralleliem described in the ISPL description

8) Compiler Symbol Table:
inpuls from ISPL compiler
9) RTM Slatement Table:

Tavble 1

! Declarations for Simple.elevator.control !

car.tloor<2:8> ;
car.cail(1S:8)<>
macro too.floor ie 78

'floor car is on
'S ftloors, 1 bit eacn u/d

! Oeclarations for Look.for.cails !

scan. floor<2:8> §
up.calli<> ;
doun.call<>
buttone ¢

! end declorations

Look. for.calls = |

'scan inputs from 8 floors
Vinput used with scan
linput used with scan
linput used with scan

for Loow.for.calls !

! floorscan cantrols multipliexors uhose inputs

'are the call puttons.

lare upcall, downcall, and button

scan. flgor = 8 next
Next. floor 1= |

'upcall at scanned floor ?

(IF up.call > car.

call(lescan. floor) « 1) next

'doun cal! at scanned floor ?
[IF down.call e> car.call(Bescan.floor) « 1) next
'button in car pushed for floor ?

(IF button => (

'decide wether up or down call

OECO0E car.

floor GTR scan. floor <>

car.call(lascan.flcor] « 13
car.call{Bescan.tloor] ~ 1

1) next

scan. floor « scan.floor + 1 next
(IF scan. floor LEQ top.floor =» next.floor))
‘leave if all floors scanned: otheruise look at next floor

rext look.for.calls

)

Fig.l(a) [SPL Source Code for LOCK.FOR.CALLS

INOEX TYPE FLAGS OEF BLK LBL 8CN
3 2 10088808 [} [}
S 1 18000008 8 a
) 2 108080008 [} 8
1S 2 10080200] 8
22 4 180881108 [} 8
38 4 l10ee8108 8 8
33 2 18eee8aze [} 8
37 2 18088008 8 3
41 3 l8aeeaal q a
42 3 eeaasal [} 3
46 3 18000001 8 8
47 10 108000081 8 @
52 7 108eeesl] L}

The outputs of the msultiplexors

OOV DNWODDOD

INDEX LABEL FLAG

S 8
6 "NEXT.F® 1
(38)

7 €
18 8
11 8
12 8
13)
14]
1S [}
16 3
| 4 8
28 8
21 8
22 8
23 8
26 8
2 8
2 8
27 8
28 8
31 [}
32 8
33 3
36 2
3s “
36]
37 -]

OPCOCE DEST

‘CLEAR ''"SCAN.F*

(33
SMERGE
*isp °
tiF = ‘UP.CAL*
(N
‘CONC ' *<TRAAC' 1'SCAN.F*

(S2) (a2) ¢ 33)
‘HRITE *°CAR.CA""ITRAAC’ 1
{ Sit S21t 42)

SMERCE"
"IF % ‘00WN.C*
(15)
“CONC ' "<TRAAC* B8'SCAN.F*
(s2) (a1 (33
"WRITE ''CAR.CA''ZTRAAC® 1
1 St st 2)
‘' SMERGE*
“IF & “BUTTON®
3)

'GTR ""XTFAAA' 'CAR.FL'"SCAN.F'
(a7t 81 (33

"BRANCH" ‘ITFAAA*
t 47)
‘CONC ' '<TRAAC® 1"SCAN.F*
S2) (w2) (33)
‘LRITE *'CAR.CA' "<TRAAC' 1
{ S)(Lra K 42)
‘JOIN *
"CONC ' *XTRAAC® 8°SCAN.F*
(52 ¢ a1 (33
‘WRITE **CAR.CA®'ITRAAC* 1
(S s2) (42)
*SMERCE®
' SMERCGE*
“INCR ''SCAN.F''SCAN.F*
(33 33
‘LEQ "TYTFAAA'TSCANLFT 7§
(an Nt 46)
‘IF E ‘XTFAAA’
(47)
'‘QLIN 'NEXT.F*
(38)
* SMERGE*
"NOOP ' "NEXT.F*
(38

SOURCE] SQURCE2 MERCE

PATHS

13 13,11

37 17.1S

3t 3.2t

36 36,35

Fig.l(c) ISPL Compiler Statement Table for LOOK.FOR.CALLS

WCNT PNAME WORDS:BITS:
1 'BUTTON®
*CAR.CA’ (B(171:17(8

*O0LN.C

LOOK.F

‘NEXT.F*
"SCAN.F'<@(2)12(8)>
‘UP.CAL'

L}
1
7
"XTFAAA®
"XTRAAC'

DR~ D@ -

Fig.1(b) ISPL Ccmpiler Symbol Table for LOOK.FOR.CALLS

NARE (PCSI TION)
1

CAR.FL'<8(2):2(8)>

T

@

0

0.0 PO

te tg N}
0

SCANFLOOR<2.0>

0.0 1AL

our
[T)
4 0.3 170 } 0.3 PO

[x o] [o]
T0.3 TPl a7 el
l :1;3
2 X <1> m<Een) MUX 2 X <@>
0,0 TPI
s | N fras
2.9 i

CARCALL[15:0]«>

proc
indp

LINK

IN
CAR FLQOR<2:0> trom tig Hob from (g He) m
I
oul out
0.2 1P0 jo.2 o 0.2 170 0.2 1P0
LINK o 0
.2 ThI

SELECY

LINK
\02.2 P!
IN 1 L_"_(_ 2 ;
—
D) T

DOWN.CALL®

<>

| wcalo BUTTON®
our) cut
0.0 TP0 0.0 120
HLINK 0 HUINK 0

FIG. 3(a) PATH GRAPH FOR LOOK.FORCALLS S R, TR SR SO i
@ $escsssaaa unstruciured inpul merge ()
T e verible name ond sirveture 4
VARIABLE s’ CONCATENATION CcONC
RO0E MARO 3> © @ === veruble Node bedy NODE -
. unsiruciured eulpul drverge
g ETEAT T oLy
o e i used e specily one sxde of 8 conneclion
] TPl e emeee e Tl I commsetion logseat choreetarsatios HALF LINK for later use by the conlrol slioceler
LINK NOOE LINK R ot NOOE codes s denticai to tull hnke
07, TP 5/ea e sulpul connaction flag
N
Voxsasonas outpul bit conneclions
opersior moule (may be sny number)
CONNECTION FLAG CODE
woul Bitwdih .
CPERATOR C complemenied
NODE oo T e
svipul itwedih P pereiiel
S serwl
sperstor sutput { may slea be eny number) 1 ot
0 eulput
= = unsiructured mpul merge
......... mutlipien/demulliplen date pelh chewos
MULTIPLEXCR/
CEMULTIPLEXOR
NODE
CONSTANT
NOOE
iy Fvewwes cannlont slruciore
| L TP uastructured sulpul diverqe
FIG 3tc) BASIC PATH GRAPH GROUPS FIG 3(d) BASIC PATH GRAPH GROUPS

ro

Due to the diversity and quantity of information required by
the allocator, and the need to access this information in a vanely
of orderings with a variety of keys, the data structures are
heavily cross referenced and contain varying amounts of
redundant information. [n particular, it may seem that the path
table and path graph are highly redundant. However, the graph
structure of the path graph makes palh location in the graph a
combinatorial problem. The palh talle provides an allernative
organization which reduces the location of a path to a linear
search and facilitates oplimization by keying on the operation
and its sources. In peneral, the diversity of structures enables
the allocator to efficiently locate information and relate it to both
the original ISPL descriplion and the allocated data part.

A rough measure of the complexity of the data structures can
be obtained in terms of the example ISPL description. The
process LOOK.FORCALLS contains 16 RTM operations in the
compiled ISPL code requiring path allocation, and 6 variables.
Although the complexity varies due to the dynamic creation and
deletion of some structures and s also highly dependent on the
degree of paralelism and the number of repetive operations
present in the description, approximately 55 words of storage
are used per line of [SPL RTM code, and 45 words of storage per
variabie.

V Allocator Algorithms

The allocator begins by examining the variables and logical
mappings declared by the user to <ee if they can be implemented
in hardware. A complete description of the cénstraints imposed
on mapp:ngs, and the implementation of array mapping access
structures 15 included in appendix A If no constraint violations
are detected, the allocator proceeds to break the ISPL
description into procesces and construct the three additional
symbol tables used in the allocation. The importance of this
breakdown is derived from the fact that each process represents
a <cparate asynchronous control environment, If there are no
shared resources, this presents no problem, as each process can
be treated in es<ence as a separate device descripion and
allocated independently. The existence of shared variables or
procedures, however, introduces several problems. In the case of
procedures, the allocator 15 capable of two actions. [t can absorb
the procedure nto cach process by creating a separate
hardware incarnation of the procedure internal to each process,
or il can treal the procedure as if 1t were ilself a separate
process and allocate an :ndependent hardware incarnation. For
the «econd achion, accrce to the procedure would then be
controlled by an artntrabion structure subsequently created by
the control allocator. In the case of variables, the access
arbitration structure would again be crealed by the control
allocator. However, within the control context of a given process,
the variable must be regarded as subject to random change due
to accesses by olher procesces. This will have a strong influence
on temporary storage allocation.

Upon completing the process breakdown, the allocator
inttializes the path graph by performing the allocation of the base
variable storage elemenls. Since ISPL does not require explicit
memory address or dala repisters, these are also assigned and
allocated. If these regicters have indeed been explicitly specified
in the ISPL, tius can be readily ascertained at the end of the
allocation and the allocator MAR and MDR deleted. After the basic
storape elements have been allocaled, the hardware necessary to
implement any array mappings i1s allocaled (again, see appendix
A). Pass one processing 15 completed by the creation of
standardized accees pomnters for each enlry in the compiler
symbol table indicating, where and how lhe entry may be

217

accessed in the path graph. This relales variables in the [SPL
RTM code 1o the allocated storage locations in the logical design.

The allocator now begins pass two processing. This s
performed by process, with hardware allocation and optional
optimization (in fulure ver<ions) performed independently for
each process. The allocator obtains the starting point of a
process in the RTM statement table and performs a statement by
statement allocation of the links, operators, and (if necessary)
temporary storage needed to implement the operation. Allocation
of an RTM statement begins with an examination of the access
pointers of the source variables. A check s made for array
memory accessing conflicts if both sources are stored in array
storage and, it needed, a temporary is allocated to hold one
source while the other s accessed. After the necessary
operalions to make the sources accessible have been determined
and any required links and storage have been entered in the
path graph, the palh table 15 accessed to determine if the path
has been previously allocated. If it has, it is reused, and the
asociated operalor is cxpanded in size if necsssary. If the path
has not been allocated, the necessary links and operator are
entered in the path graph and the path i1s recorded in the path
table. An analysis is now made to determine the appropriate
destination, based on the de<tination specified by the statement
table entry and the characteristics of the operation sources.
Temporary destinalions generated by the ISPL compiler are
removed at this point and, depending on the stabiity of the
operation sources, the operation result s either left at the
operator oulpul for direct cascading to the next path (as in a
combinatorial logic network), or gated to an allocator generated
temporary.

Temporaries generated by the ISPL compiler are useless o
the allocator due to a generation and usage criterion which,
though adenuale for simulation, 15 unsuitable for hardware
implementation. The ailocator gencrates temporaries when either
source could change before the operation result s used. Cases
where this might occur are :

t Either source is shared between two or more procesces
and thus is subject to random change.

+ Either source is an array memory access. This is necessary
due to the fact that it 1s impossible in the general case to
know if the value in the MOR will change without extensive
processing. A worst case can plausibly be developed here
which requires n statemen! look-ahead, a value trace of
the MAR, and 1s s<hll undecidable without wviolating the
detirmition of the ISPL parallel action construct.

¢ Either source 15 a temporary slorage location ailocated in a
previous instruction. The justification for this condition 1s a
complex combination of problems in the ISPL language and
problems inlernal to the allocator, relating again manly to
problems in deternining the stabiity of the temporary
over parallel operalions.

When the destination has been chosen, the necessary link is
created in the path graph and any further operations necessary
to store the destinalion n array storage are delermined and
performed if they are required.

Several special cases are worth mentioning. Subfield accesses
of variables and logical negation, which are operations in the
ISPL RTM code, do not require the full processing just described,
but are handled by manipulation of the access pointers. The ISPL
conlrol operations using dala vaiues as conditionals require only
the «ource processing, so that a ponter can be constructed to

allow the control allocator to access the data valve. Finally,

‘
|
|
i
|

operalion:.

commonly avarlable as regicter functions
(nc/decclear shufte) are recopmzed and the required function is

added lo the repister characteristics.

After each <talement i processed, lthe path crealed 15
checked apamnst all olher paths in use concurrently. Parallel
operalions are recorded in the palh parallelhism table, and the
user 1s warned of any array memory or register access contlicts
or ambiguities thal mipht occur. No more than a warning can be
generated, however, as the allocator cannot detect
synchromzation mechamiams «<pecified by the user in the ISPL
description which could recolve the ambiguity or conflict.

After a process has been allocated as described above, the
path graph contains a worst case allocation of the process n
terme< of operators and temporary registers. Optimization can be
performed here using the parallehsm information and path
allocation records formed during the allocation of the process. As
an cxample optimizalion, compression of temporary registers is
perfcrmed uaing the criterion “combine the registers if they are
compatible in <1ze and no paraiiel or sequential usage conflicts
exist” Atter lthe oplimization roulines, the path parallefism table
15 cleared and the path table sclectively purged <o that these
structures do not become unmanageably large.

After all proce<ses have been allocated, multipiexers are
allocated where needed and the allocation is complete.

VI Allocator Outputs

The primary oulput of the allocator 1s the path graph, which
15 used by the data base module in conjunclion with the allocator
symbol table to map IC’s onlo the logical allocation. The allocator
also produces a dump of the major internal tables for the user.

VIl Allocator Performance

The allocator describrd here is currently undergoing testing,
<0 the recults presented here are preliminary. Also, the actual
hardware 15 to be allocated by the module dala base, which is
currently in the design <tage. However, by performing a hand
aliocation of IC chips onto the path graph, we have obtained
prehiminary reculte. The 1SPL description used was parl of the
desipn style experiment described in [Thomas 77), which
provides a controlied measure of how well the allucator performs
in relationciup to human designers. The resulls are shown in
table 2. The co<! figures for the allocator design were derived
using Thomaa' cost e<limate :

Cost for dala part of process LOOK.FOR.CALLS as implemented for
Thomas® de<ign experiment:

De=gner 10: §32.49 Designer 5: §71.45

Cost for data parl of process LOOK.FORCALLS as implemented
from allocator path graphe:
$47.63

tThe same cubset of the TTL chip family used in the design
experiment wae used lo implement the aliocator path graph.

Table 2

Cost = (lotal chwp cost) + (83 overhead/chip)

One can see that the cost of the automaled design fails within
the same order of magnitude as the cost of designs produced for
the decign experiment, with no <ignificant optimization on the
part of the allocalor.

VIl Conclusions and Future Research

The encouraging resuits described here have led us to the
following conclusions :

¢ lhe basic experimental allocator described here will function
successfully as the base for an expanded allocator with
optimization capabiities

+ specific module set information is not needed to produce a
non-optimal allocation

the size of the ISPL description which can be handled
depends only on the amount of core available to the
allocator

-

the allocator can detect user constructs in the [SPL
description which will produce complex hardware or
unreliabie operalion

In addition, we have concluded that a large portion of the
complexaity of the atlocator 1s due to :

¢ The abiity lo allocate multi-process ISPL descriptions.

¢ The lack of a one-to-one correspondence between the
compiled RTM statement table operations and the actions
necesnary lo perform these operations in a hardware
implementation.

¢ The availability of the logical mapping facility in ISPL.

Future results will include a more extensive evaluation of the
ailocator performance using Thomas® design style experiment as a
yardstick, and comparicon with other large, muiti-process designs
currently under construction at C-MU.

Appendix A Mappings

The 1SPL languase contains a generalized logical mapping
facility allowing the vwer to declare a logical variable in terms of
a previously deciared physical or logical variable. The only
reatriction imposed by the ISPL compiler is that the physical size
(total bite) of each side of the declaration be equal. For mappings
where the mapped varable s declared as a register type
variable, this restrichion 1s sufficient. When the mapped variable
16 declared as an array structure, however, additional restrictions
musl be impoced to insure thal a reasonable hardware
implementation of the mapping can be created. Consider the
following, example mapping, wiuch will be used to define the
terms u<ed in the equation which defines the mapping
constraints. The first declaration s the physical (base)
declaration, and the <econd is the mapping declaration.

A1[0:1,8:9,14:15]<0:7> ;
AA2(5,9,12]<0:15> := A1[0:1,8:9,18:15]<0:7> ;

Define the following terms:

main declaralion

mapping primary

mapping secondary

bnlcntp

bulcnls

b0
b0

adr

adr

declaration of Al

feft half of mapping deciaration
(AA2)

right half of mapping declaration
(Al) (may in general be all of the
main declaration or a subsetl of
the addressing space detfined by
the main declaration)

bit size of primary word (16 bits
in this example)

bit size of secondary word (8 bits
in this example)

lgz(btlcnlp/bltcnls) (1 in this
example)

lowest address of primary (5 in
this example)

lowest address of secondary (O in
this example)

address from primary address
space

address from secondary address
space

—_@

MUX 2 X <8>
(€D}
CATA ouT
FOR AAZ DATA IN FOR Al
0.15 TPO 0.7 171
. 0.7 190

0.15 TP1

With these definitions, any mapping satisfying the equation

(adrp + M)Td = adrg where X = (b0 1(-d)) - bOp -
constant and T 1s the logical <hift
operation (left shift s positive
direction)

can be implemented with al most an addition and wired shift in
the address palh, a mulliplexor /demultipiexor pair to provide the
necessary galing into and out of the MOR of the main definition
variable, and, for the case where bitent , > bnlcnls, a MDR for the
primary declaration to ascemble the primary word while the
necessary number of memory accesses are made in the main
memory.

The path graph representation of the example mapping as
allocated by the data memory allocator is attached as fig. A-1.

References

[Barb 75] Barbacci, MR, Sieworek, D.P, "The CMU RT-CAD
System: An Innovative Approach to Computer Aided
Design™,AFIPS Conference Proceedings, vol. 45 pp
6A13-655, 1976.

(Thom 77] Thomas, DE., Sieworek, D.P, "Measuring Designer
Performance to Verify Design Automation Systems",
Desipn Automalion Conference Proceedings, vol. 14
pp 411-418, 1977.

[Snow 78] Snow,E, Sicworek, D.P., Thomas, D.T,, "A Technology
Relative Computer Aided Design System: Abstract
Representations, Transtorms, and Design Tradeoifs",
Desipn Automation Conference Proceedings, vol. 15,
1978.

ADDRESS IN FOR AA2
0.2 TPL

roc
frdo

proc

AAZMOR <0 15> AIMOR<0.7»

UNK (4o
AI{01,89,1415]0 7> P

0.7 'P1 MAR<O 2>

LNC oo
Eo.—l—'l J—Déh

Cour)
0.7 TPO
DATA OUT =
FOR AL sroc
INK
0.7 190 L indo
DATA IN
FOR AA2 DEMUX 2 X <8>
0,15 1P1

0.7 1PI 019 1P1

proc

unk Brds

SELECT

0.0 ™

oc
LN Fge

T30

LNk Rres v Pres
0.7 1PO 515 PO nete Thia reprasente the (raoh immediaioly
sller crention by Ihe memary mepping
rovines
FIG. Al PATH GRAPH FOR MEMCRY MAPPING EXAMPLE

219

R ————

76

WS NIAAE TCDLN | e AT RIS ~ 2ol T WIS\ W .

———————

APPENDIX IV

The PDP-8 Design

This section contians the PDP-8 ISPL description, a block diagram

of the allocator output and the Chip Count for the DEC and automated

CMU PDP-8. THE CMU DESIGN IS PRELIMINARY - IT HAS NOT BEEN

VERIFIED AND THE CHIP COUNT IS APPROXIMATE.

77

PDP8 :=(declare

! The basic PDP-8 instruction set, not including the extended arithmetic
| element (EAE) option. [/0 instructions are limited to those
! with the interrupt mechanism

lyeve Memory.State vor
M\Memory [(B: 408951 <8:11>;
lyve Processor.State e

lac<B:12>;
L\Link<>
AC\Accumulator<8:11>
PC\Program.Counter<8:11>;
RUN<>;
1.STATE<>;
1.REQUEST<>;
SWITCHES<B:11>;

lyeve Instruction.Format e

iNinstruction<B:11>;

op\operation.code<B:2>

ib\indirect.bit<>
pb\page.d.bi t<>
pa\page. address<8:6>

10.SELECT<@:5>
io.control<8:2>
10.Pl<>
10.P2<>
10.P4<>
sma<> 1= j<5>y
spa<> 1= 1<5>;
sza<> 1= 1;
sna<> 1= i3
snl<> 1= (<75
szl<> 1= i<7>y
ig<> 1= i<8>4
group<> := i<3>;
cla<> 1= i<b4>;
clle> t= <G5>
cma<> 1= i;
cml<> 1= i<7>;
rar<> 1= (<8>;
ral<> = i<9>;
rt<> 1= i<10>;
iac<> 1= i<ll>y
osr<> 1= <95,
hite> 1= <105
RS SIESR—— pR——-—

t= |ac;
1= lac<l:12>:

1= 1<B:2>;
1= (<3>3
= ;
= i<5:1l>;

t= 1<3:8>;
t= 1<9:1l>;

! device select
! device operation

t= jo.control;
t= jo.control<l>y
t= jo.control<2>;

skip on minus AC

skip on positive AC
skip on zero AC

skip on AC not zero
skip on L not zero
skip on L zero

invert skip sense
microinstruction group
clear AC

clear L

complement AC
complement L

rotate right

rotate left

rotate tuwice

increment AC

logical or AC with SWITCHES
halt the processor

deal ing

78

79

lwve Effective.Address o

skip<>;
last.pc<B:11>;
eadd\effective.address<B:11>;

efadd :=(
(Decode pb =>
eadd «'00800 e pa;
eadd « last.pc<B:4> @ pa)
Next
(If ib =>
X (If eadd<B:8> Eql #0801 =>(Mleadd] « Mleadd] + 1)) Next
4 eadd « Mleadd]));

input.output :=(
(if i<3:11> eql '0000008001 =>
‘ (I.STATE « 1
))s
(if i<3:11> eq! '000000018 =>
(1.STATE «8))
b }is

skip.group :=(
skip « B Next .
(Decode is =>
((If snl And (L Eql 1) => skip « 1)
(If sza And (AC Eql B) => skip « 1);
(If sma And (AC Lss B) => skip « 1));
((IF(szl and sna and spa)l Eql B8 => skip « 1)
(If szl And (L Egl B) => skip « 1);
(If sna And (AC Neq B) => skip « 1);
(If spa And (AC Geq 8) => skip « 1)))
Next '
(If skip => PC « PC + 1) ! Skip

)3
operate :=
((Decode group =>
((If cla => AC « B);
(1f cit => L « B) Next
(If cma => AC « Not AC);
(If cml => L « Not L) Next
(1f iac => lac « lac + 1) Next
(Decode rt =»
((If ral => lac « lac *rl 1);
(If rar => lac « lac trr 1))
((If ral => lac « lac ™l 2);
(If rar => lac « lac *rr 2))
));

(Decode i<ll> =>
((If hlt => RUN « B)}
skip.group Next

80
(If cla => AC « B) Next
(I1f osr => AC « AC Or SWITCHES));
(If cla => AC « @) ! eae group

)
)
)iy
execute :=(
EFADD NEXT
(Decode op =>
AC « AC And Mleadd];
lac « lac + M(eadd];

Mleadd] « Mleadd] + 1 Next
(If Mleadd] Eql 8 => PC « PC + 1))

Mleadd] « AC Next
AC « B);
(Mleadd] « PC Next
PC « EADD + 1);

PC « eadd;

input.output;

operate
))

eralced |
Iv%v Instruction.Interpretation v

i « MIPC); last.pc « PC Next
PC « PC + 1 Next
execute Next
(If I.STATE And [.REQUEST =>
(M[B] « PC Next
PC « 11}
)

i start :=(

NEXT START
)

81 |

DEC - PDP-8/E Chip Count

The following chip count was taken from M8300 '"major registers." !:
|
|

Part (g':l['L equiv.) Quantity Function

7400 3 Quad 2 input NAND]

7402 1 Quad 2 input NOR :

74H04 2 Hex inverter

7420 1 Dual 4 input NAND

7430 1 8 input NAND

74H87 3 4 bit true/complement

7483 3 4 bit binary full adders

84151 12 1 of 8 MUX

74153 6 dual 4 to 1 MUX

8271 74194 IS 4 bit universal shift reg.

8266 74157 8 Quad 2 to 1 MUX 1
] 8235 74087 3 4 bit true/complement
i 8881 7401 6 Quad 2 input NAND

Total 64 integrated circuit chips

-

82

CMU - PDP-8 Chip Count

The following chip count was taken from the part of the automated
design corresponding to the DEC PDP-8 M8300 "major resistors." The chips
we allocated by hand using a "worst case" allocation. For example, if
the allocator specified a 7 to 1 13 bit MUX, one was provided, even if
the MUX could be decomposed into a simpler structure.

Part of Path Graph

Part # (TI TTL Equiv.) Quantity Implemented
74151 13 MUX 7 x <13>
8271 74194 3 AC<0:11>
7474 (%) 1 L<0>, TREG3 <0>
7402 3

7404 2 } GRs L2

74153 7 MUX 3 x <13
8271 74194 3 TREG3 <1:12>
8271 74194 3 LAST.P<0:11>
7483 3

7400 3

7404 3 INCR<13>
7420 it

7430 1 e

7483 4 ADD<14>

7400 3

7404 2} AND<12>
74153 6 MUX 4 x <12>
8271 7419¢ 3 TREGL <0:11>
74153 6 MUX 3 x <12>
8271 74194 3 PC<0:11>
74153 6 MUX 3 x <12>
8271 74194 3 TREG2 <0:11>
7483 3 INCR<13>
8271 74194 3 EADD<Q:11>
74153 6 MUX 3 x <12>

Total 94 integrated circuit chips

CMU PDP-8 Design
The next 4 pages contain the automated PDP-8 design.
All connections contain the number and position of bits specified.

Output wires not attached are used by the control to test for certain
conditions.

Some ![UX connections not specified(and operator input connections)
are padded with zeros; a few are padded with ones or not used. Details
are found in the actual allocator output files.

83

84

</)2:23 >
<24:35> <yt
v
MUX 3x<12)
Fﬁ AO< P11 (INCREMERTS! 3]
— R
EADDLP:8>
4 5y
4/3‘) 459&
EQL <9 > MUx 3x</2 M
= //vazsms,ua
< @Dil)
‘L L LAC LIIZD
2B] TRees</z>
mox 3xuz> UK X2
TREG Z2<g8i 117 TRES 1B i1 1p
F » 3 l
3 | |
ﬂ?é’/wo;ey
M<pe 12 7
' N
A DDRESSING LAST. PP 42 TLD: 11
A& 1C
i [A
4> <5107 = s
ConeAT<L | 2>
CONCATL Y 2

Cmu PDP-§ peS/6n

85

<I137Z255

SWITCH <79:50) [
KRGS TER 1
LPp.orip MUX
[7 tfo 1
/'3 Bits

P4
00,
<5349 (ﬁé \[<Z-7;38>

<12

ORKIZ D>

e LAC<P 12>
el | St B
LACI 1)) ACCUMULATER]

LACLPEI2> | Zac<gs [(Assomed Cenmn /e riented
< Oufjufs)
LY 25> s
TREFHAS Pl > !
(/??D/Q? " <382 4]L \
MUX 3 x<13»

TREGE3 <P /2]
ARAR Y

L TREEBL 102>
~
P TREG 3

LYY 2>
! q

ERUALLIZD INCREMENT
</)3 >

e

Acaumw.ﬂﬂ‘/?- {
AR ITHME TI<
KOG IC ADDL 14>

Crict PDP-E LDESIEN l

- i _— T =
. LACY 12>
TRECI<B: 11> 1 kot . ity b — ‘
mp R &
«F _‘ ¢ @
- y ¥ A
~ ek <ur <uz
Ko«&d 543
.24 " i
5 PNC<I 12> . J
" #@W»@@ } % v __ w_‘ —— M
/F : <@y Lo:11p @ :
*— <
§7 <0:8> mﬁﬁﬂmﬁv. E®RLLIZ> AND< > ANDL 1> :
, i
EXLLT > / |
1_n «V «—\u.\.i *mwx _
A.HMQAMA.\v <0:8> <g 1 &
EWL =9 2 J,w ,P]
11> <olit>
e ANDEI> AN DL 1> NEQRL 12>
(T5TATE< L)
H &
ANDSI> ANDLI> PEC Eurv,9LENT
ﬂ ‘ REG 1S TEAR CONTROL
/? &mm? A\uw%ow\ﬁv
ik AND SkrpP KO&/IC
£ LLL> v
Q\b.\x INCLUDEDH N CHIP COUNT
,_Ammfmt? 3
sPA) c Y PPP-8 bﬂ.m.\%l

T

1. REQu<I)

.

ANDLI D>

RUNLID QLEARL

L

JNATOR CoNTROL

Ly PP § DESIEN

87

